172 research outputs found

    A comparison between different propagative schemes for the simulation of tapered step index slab waveguides

    Get PDF
    The performance and accuracy of a number of propagative algorithms are compared for the simulation of tapered high contrast step index slab waveguides. The considered methods include paraxial as well as nonparaxial formulations of optical field propagation. In particular attention is paid to the validity of the paraxial approximation. To test the internal consistency of the various methods the property of reciprocity is verified and it is shown that for the paraxial algorithms the reciprocity can only be fulfilled if the paraxial approximation of the power flux expression using the Poynting vector is considered. Finally, modeling results are compared with measured fiber coupling losses for an experimentally realized taper structure

    The skeletal phenotype of chondroadherin deficient mice

    Get PDF
    Chondroadherin, a leucine rich repeat extracellular matrix protein with functions in cell to matrix interactions, binds cells via their a2b1 integrin as well as via cell surface proteoglycans, providing for different sets of signals to the cell. Additionally, the protein acts as an anchor to the matrix by binding tightly to collagens type I and II as well as type VI. We generated mice with inactivated chondroadherin gene to provide integrated studies of the role of the protein. The null mice presented distinct phenotypes with affected cartilage as well as bone. At 3–6 weeks of age the epiphyseal growth plate was widened most pronounced in the proliferative zone. The proteome of the femoral head articular cartilage at 4 months of age showed some distinct differences, with increased deposition of cartilage intermediate layer protein 1 and fibronectin in the chondroadherin deficient mice, more pronounced in the female. Other proteins show decreased levels in the deficient mice, particularly pronounced for matrilin-1, thrombospondin-1 and notably the members of the a1-antitrypsin family of proteinase inhibitors as well as for a member of the bone morphogenetic protein growth factor family. Thus, cartilage homeostasis is distinctly altered. The bone phenotype was expressed in several ways. The number of bone sialoprotein mRNA expressing cells in the proximal tibial metaphysic was decreased and the osteoid surface was increased possibly indicating a change in mineral metabolism. Micro-CT revealed lower cortical thickness and increased structure model index, i.e. the amount of plates and rods composing the bone trabeculas. The structural changes were paralleled by loss of function, where the null mice showed lower femoral neck failure load and tibial strength during mechanical testing at 4 months of age. The skeletal phenotype points at a role for chondroadherin in both bone and cartilage homeostasis, however, without leading to altered longitudinal growth

    Roles of hyaluronan in bone resorption

    Get PDF
    BACKGROUND: Hyaluronan, an unsulfated glycosaminoglycan, while being closely linked to osteoclast function several years ago, has received little attention lately. Given recent new knowledge of hyaluronan's possible cell binding abilities, it is important to re-examine the role of this polysaccharide in bone homeostasis. DISCUSSION: Previously published data demonstrating a linkage between induction of hyaluronan synthesis and osteoclast-mediated bone resorption are reviewed. Suggestions are made involving the cell binding ability of hyaluronan and its potential to mediate osteoclast binding to bone surfaces and its potential to serve as a diffusion barrier and participate in the sealing zone required for osteoclast-mediated bone resorption. SUMMARY: This brief article summarizes previous studies linking HA to bone resorption and suggests roles for hyaluronan in the process of bone resorption

    Prognostic significance of osteopontin expression in early-stage non-small-cell lung cancer

    Get PDF
    Osteopontin (OPN) is a multifunctional protein, which has recently been shown to be linked to tumorigenesis, progression and metastasis in different malignancies. Since non-small-cell lung cancer (NSCLC)'s prognosis remains bad, with few predictors of outcome, the purpose of this study was to evaluate if OPN might be involved in NSCLC's biology and therefore represent a prognostic marker and a target for new therapeutic trials. Immunohistochemistry was used to detect OPN expression, evaluated as percentage of neoplastic cells with cytoplasmic immunoreactivity, in a wide cohort of patients with stage I NSCLC (136 cases). The median value of this series (20% of positive cells) was used as the cutoff value to distinguish tumours with low (<20%) from tumours with high (⩾20%) OPN expression. A statistically significant correlation between high levels of OPN and shorter overall (P=0.034) and disease-free (P=0.011) survival in our patients was shown. Our results support the hypothesis that high OPN expression is a significantly unfavourable prognostic factor for the survival of patients with stage I NSCLC. This conclusion has notable importance in terms of the biological characterization of early-stage tumours and therapeutic opportunities

    Generating Sustainable Value from Open Data in a Sharing Society

    Get PDF
    Part 1: Creating ValueInternational audienceOur societies are in the midst of a paradigm shift that transforms hierarchal markets into an open and networked economy based on digital technology and information. In that context, open data is widely presumed to have a positive effect on social, environmental and economic value; however the evidence to that effect has remained scarce. Subsequently, we address the question how the use of open data can stimulate the generation of sustainable value. We argue that open data sharing and reuse can empower new ways of generating value in the sharing society. Moreover, we propose a model that describes how different mechanisms that take part within an open system generate sustainable value. These mechanisms are enabled by a number of contextual factors that provide individuals with the motivation, opportunity and ability to generate sustainable value

    Intraarticular location predicts cartilage filling and subchondral bone changes in a chondral defect: A randomized, blind, long-term follow-up trial involving 82 rabbit knees

    Get PDF
    Open Access - This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the source is credited.Background and purpose: The natural history of, and predictive factors for outcome of cartilage restoration in chondral defects are poorly understood. We investigated the natural history of cartilage filling subchondral bone changes, comparing defects at two locations in the rabbit knee. Animals and methods: In New Zealand rabbits aged 22 weeks, a 4-mm pure chondral defect (ICRS grade 3b) was created in the patella of one knee and in the medial femoral condyle of the other. A stereo microscope was used to optimize the preparation of the defects. The animals were killed 12, 24, and 36 weeks after surgery. Defect filling and the density of subchondral mineralized tissue was estimated using Analysis Pro software on micrographed histological sections. Results: The mean filling of the patellar defects was more than twice that of the medial femoral condylar defects at 24 and 36 weeks of follow-up. There was a statistically significant increase in filling from 24 to 36 weeks after surgery at both locations. The density of subchondral mineralized tissue beneath the defects subsided with time in the patellas, in contrast to the density in the medial femoral condyles, which remained unchanged. Interpretation: The intraarticular location is a predictive factor for spontaneous filling and subchondral bone changes of chondral defects corresponding to ICRS grade 3b. Disregarding location, the spontaneous filling increased with long-term follow-up. This should be considered when evaluating aspects of cartilage restoration

    Expression of Osteopontin in oesophageal squamous cell carcinoma

    Get PDF
    Osteopontin is a multifunctional 34 kDa extracellular matrix protein with a cell-binding domain. It is involved cell adhesion and cell migration and is therefore considered to influence tumorigenesis and/or metastasis. The purpose of the present study was to evaluate the clinical significance of Osteopontin expression in oesophageal squamous cell carcinoma (ESCC). In the present study, we immunohistochemically investigated the relationship between Osteopontin expression and clinicopathological factors including prognosis in surgical specimens of primary tumours in 175 patients with ESCC. Osteopontin was expressed in 48% of 175 patients. Osteopontin expression was significantly correlated with lymph node metastasis, lymphatic invasion, and stage (P=0.0015, 0.037 and 0.033, respectively). Tumours with expressing Osteopontin exhibited more lymph node metastasis, lymphatic invasion and advanced stage than the tumour with negative Osteopontin expression. Five-year survival rate was better in patients with negative Osteopontin expression than in those with positive Osteopontin expression (P=0.035). However, multivariate analysis revealed that Osteopontin expression was not an independent prognostic factor. As our findings suggest that Osteopontin may play an important role in progress of ESCC, the evaluation of Osteopontin expression is useful for predicting the malignant properties of ESCC

    Osteopenia, decreased bone formation and impaired osteoblast development in Sox4 heterozygous mice

    Get PDF
    The transcription factor Sox4 is vital for fetal development, as Sox4–/– homozygotes die in utero. Sox4 mRNA is expressed in the early embryonic growth plate and is regulated by parathyroid hormone, but its function in bone modeling/remodeling is unknown. We report that Sox4+/– mice exhibit significantly lower bone mass (by dual-energy X-ray absorptiometry) from an early age, and fail to obtain the peak bone mass of wild-type (WT) animals. Microcomputed tomography (μCT), histomorphometry and biomechanical testing of Sox4+/– bones show reduced trabecular and cortical thickness, growth plate width, ultimate force and stiffness compared with WT. Bone formation rate (BFR) in 3-month-old Sox4+/– mice is 64% lower than in WT. Primary calvarial osteoblasts from Sox4+/– mice demonstrate markedly inhibited proliferation, differentiation and mineralization. In these cultures, osterix (Osx) and osteocalcin (OCN) mRNA expression was reduced, whereas Runx2 mRNA was unaffected. No functional defects were found in osteoclasts. Silencing of Sox4 by siRNA in WT osteoblasts replicated the defects observed in Sox4+/– cells. We demonstrate inhibited formation and altered microarchitecture of bone in Sox4+/– mice versus WT, without apparent defects in bone resorption. Our results implicate the transcription factor Sox4 in regulation of bone formation, by acting upstream of Osx and independent of Runx2
    corecore