7,233 research outputs found

    The strategic impact of META-NET on the regional, national and international level

    Get PDF
    This article provides an overview of the dissemination work carried out in META-NET from 2010 until early 2014; we describe its impact on the regional, national and international level, mainly with regard to politics and the situation of funding for LT topics. This paper documents the initiative’s work throughout Europe in order to boost progress and innovation in our field.Postprint (published version

    Low Mach Number Modeling of Type Ia Supernovae

    Full text link
    We introduce a low Mach number equation set for the large-scale numerical simulation of carbon-oxygen white dwarfs experiencing a thermonuclear deflagration. Since most of the interesting physics in a Type Ia supernova transpires at Mach numbers from 0.01 to 0.1, such an approach enables both a considerable increase in accuracy and savings in computer time compared with frequently used compressible codes. Our equation set is derived from the fully compressible equations using low Mach number asymptotics, but without any restriction on the size of perturbations in density or temperature. Comparisons with simulations that use the fully compressible equations validate the low Mach number model in regimes where both are applicable. Comparisons to simulations based on the more traditional anelastic approximation also demonstrate the agreement of these models in the regime for which the anelastic approximation is valid. For low Mach number flows with potentially finite amplitude variations in density and temperature, the low Mach number model overcomes the limitations of each of the more traditional models and can serve as the basis for an accurate and efficient simulation tool.Comment: Accepted for publication in the Astrophysical Journal 31 pages, 5 figures (some figures degraded in quality to conserve space

    Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies

    Full text link
    The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the "stiffness" of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the QQ-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.Comment: Submitted to Phys. Rev. Lett., 5 pages, 3 figure

    There are many barriers to species’ migrations

    Get PDF
    Temperature-change trajectories are being used to identify the geographic barriers and thermal ‘cul-de-sacs’ that will limit the ability of many species to track climate change by migrating. We argue that there are many other potential barriers to species’ migrations. These include stable ecotones, discordant shifts in climatic variables, human land use, and species’ limited dispersal abilities. To illustrate our argument, for each 0.5° latitude/longitude grid cell of the Earth’s land surface, we mapped and tallied the number of cells for which future (2060–2080) climate represents an analog of the focal cell’s current climate. We compared results when only considering temperature with those for which both temperature and total annual precipitation were considered in concert. We also compared results when accounting for only geographic barriers (no cross-continental migration) with those involving both geographic and potential ecological barriers (no cross-biome migration). As expected, the number of future climate analogs available to each pixel decreased markedly with each added layer of complexity (e.g. the proportion of the Earth’s land surface without any available future climate analogs increased from 3% to more than 36% with the inclusion of precipitation and ecological boundaries). While including additional variables can increase model complexity and uncertainty, we must strive to incorporate the factors that we know will limit species’ ranges and migrations if we hope to predict the effects of climate change at a high-enough degree of accuracy to guide management decisions

    Bid participates in genotoxic drug-induced apoptosis of HeLa cells and is essential for death receptor ligands' apoptotic and synergistic effects

    Get PDF
    Background: The BH3-only protein Bid is an important component of death receptor-mediated caspase activation. Bid is cleaved by caspase-8 or -10 into t-Bid, which translocates to mitochondria and triggers the release of caspase-activating factors. Bid has also been reported to be cleaved by other proteases. Methodology/Principal Findings: To test the hypothesis that Bid is a central mediator of stress-induced apoptosis, we investigated the effects of a small molecule Bid inhibitor on stress-induced apoptosis, and generated HeLa cells deficient for Bid. Stable knockdown of bid lead to a pronounced resistance to Fas/CD95- and TRAIL-induced caspase activation and apoptosis, and significantly increased clonogenic survival. While Bid-deficient cells were equally sensitive to ER stress-induced apoptosis, they showed moderate, but significantly reduced levels of apoptosis, as well as increased clonogenic survival in response to the genotoxic drugs Etoposide, Oxaliplatin, and Doxorubicin. Similar effects were observed using the Bid inhibitor BI6C9. Interestingly, Bid-deficient cells were dramatically protected from apoptosis when subtoxic concentrations of ER stressors, Etoposide or Oxaliplatin were combined with subtoxic TRAIL concentrations. Conclusions/Significance: Our data demonstrate that Bid is central for death receptor-induced cell death and participates in anti-cancer drug-induced apoptosis in human cervical cancer HeLa cells. They also show that the synergistic effects of TRAIL in combination with either ER stressors or genotoxic anti-cancer drugs are nearly exclusively mediated via an increased activation of Bid-induced apoptosis signalling

    Who receives treatment for alcohol use disorders in the European Union? A cross-sectional representative study in primary and specialized health care

    Get PDF
    Background Alcohol use disorders (AUDs) are highly prevalent in Europe, but only a minority of those affected receive treatment. It is therefore important to identify factors that predict treatment in order to reframe strategies aimed at improving treatment rates. Methods Representative cross-sectional study with patients aged 18\u201364 from primary health care (PC, six European countries, n = 8476, data collection 01/13\u201301/14) and from specialized health care (SC, eight European countries, n = 1762, data collection 01/13\u201303/14). For descriptive purposes, six groups were distinguished, based on type of DSM-IV AUD and treatment setting. Treatment status (yes/no) for any treatment (model 1), and for SC treatment (model 2) were main outcome measures in logistic regression models. Results AUDs were prevalent in PC (12-month prevalence: 11.8%, 95% confidence interval (CI): 11.2\u201312.5%), with 17.6% receiving current treatment (95%CI: 15.3\u201319.9%). There were clear differences between the six groups regarding key variables from all five predictor domains. Prediction of any treatment (model 1) or SC treatment (model 2) was successful with high overall accuracy (both models: 95%), sufficient sensitivity (model 1: 79%/model 2: 76%) and high specificity (both models: 98%). The most predictive single variables were daily drinking level, anxiety, severity of mental distress, and number of inpatient nights during the last 6 months. Conclusions Variables from four domains were highly predictive in identifying treatment for AUD, with SC treatment groups showing very high levels of social disintegration, drinking, comorbidity and functional losses. Earlier intervention and formal treatment for AUD in PC should be implemented to reduce these high levels of adverse outcomes

    Losing your edge: climate change and the conservation value of range-edge populations

    Get PDF
    Populations occurring at species\u27 range edges can be locally adapted to unique environmental conditions. From a species\u27 perspective, range-edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species\u27 distributions. Therefore, range-edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species\u27 persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range-edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species\u27 range edges may expand under future climate change and become more common relative to range-core populations. We also highlight how large-scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest-cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range-edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range-edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change

    Mortality risk and mental disorders: longitudinal results from the Upper Bavarian Study

    Get PDF
    The object of the study was the assessment of the mortality risk for persons with a mental disorder in an unselected representative community sample assessed longitudinally. Subjects from a rural area in Upper Bavaria (Germany) participated in semi-structured interviews conducted by research physicians in the 1970s (first assessment) and death-certificate diagnoses were obtained after an interval up to 13 years later. The sample consisted of 1668 community residents aged 15 years and over. Cox regression estimates resulted in an odds ratio of 1·35 (confidence interval 1·01 to 1·81) for persons with a mental disorder classified as marked to very severe. The odds ratio increased with increasing severity of mental illness from 1·04 for mild disorders, 1·30 for marked disorders, to 1·64 for severe or very severe disorders. The relative risk (odds ratio) for persons with a mental disorder only and no somatic disorder was 1·22, for persons with only a somatic disorder 2·00, and for those with both a mental and a somatic disorder 2·13. The presence of somatic illness was responsible for most of the excess mortality. Somatic disorders associated with excess mortality in mental disorders were diseases of the nervous system or sensory organs, diseases of the circulatory system, diseases of the gastrointestinal tract, and diseases of the skeleton, muscles and connective tissue (ICD-8). Thus, while mental illness alone had a limited effect on excess mortality, comorbidity with certain somatic disorders had a significant effec
    corecore