24 research outputs found

    Using clay to control harmful algal blooms : deposition and resuspension of clay/algal flocs

    Get PDF
    Author Posting. © Elsevier B.V, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V for personal use, not for redistribution. The definitive version was published in Harmful Algae 4 (2005): 123-138, doi:10.1016/j.hal.2003.12.008.Harmful algal blooms (HABs) may be legitimate targets for direct control or mitigation, due to their impacts on commercial fisheries and public health. One promising control strategy is the rapid sedimentation of HABs through flocculation with clay. The objective of this study was to evaluate flow environments in which such a control strategy might be effective in removing harmful algae from the water column and depositing a layer of clay/algal flocs on the sea floor. We simulated the natural environment in two laboratory flumes: a straight-channel “17-m flume” in which flocs settled in a still water column and a “racetrack flume” in which flocs settled in flow. The 17-m flume experiments were designed to estimate the critical bed shear stress for resuspension of flocs that had settled for different time periods. The racetrack flume experiments were designed to examine the deposition and repeated resuspension of flocs in a system with tidal increases in flow speed. All flume runs were conducted with the non-toxic dinoflagellate Heterocapsa triquetra and phosphatic clay (IMC-P4). We repeated the experiments with a coagulant, polyaluminum hydroxychloride (PAC), expected to enhance the removal efficiency of the clay. Our experiments indicated that at low flow speeds (≤ 10 cm s-1), phosphatic clay was effective at removing algal cells from the water column, even after repeated resuspension. Once a layer of flocs accumulated on the bed, the consolidation, or dewatering, of the layer over time increased the critical shear stress for resuspension (i.e. decreased erodibility). Resuspension of a 2-mm thick layer that settled for 3 hours in relatively low flow speeds (≤ 3 cm s-1) would be expected at bed shear stress of ~0.06-0.07 Pa, as compared to up to 0.09 Pa for a layer that was undisturbed for 9 or 24 hours. For the same experimental conditions, the addition of PAC decreased the removal efficiency of algal cells in flow and increased the erodibility of flocs from the bottom. By increasing the likelihood that flocs remain in suspension, the addition of PAC in field trials of clay dispersal might have greater impact on sensitive, filter-feeding organisms. Overall, our experiments suggest that the flow environment should be considered before using clay as a control strategy for HABs in coastal waters.This project was funded by the Florida Institute of Phosphate Research (Grant # 99-03-138), with facilities provided by the Rinehart Coastal Research Center at WHOI

    The importance of human dimensions research in managing harmful algal blooms

    Get PDF
    Author Posting. © Ecological Society of America, 2010. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 8 (2010): 75–83, doi:10.1890/070181.Harmful algal blooms (HABs) are natural freshwater and marine hazards that impose substantial adverse impacts on the human use of coastal and marine resources. The socioeconomic and health impacts of HABs can be considerable, thereby making a case for “human dimensions” research to support HAB response. Human dimensions research is multidisciplinary, integrating social science, humanities, and other fields with natural science to enhance resource management by addressing human causes, consequences, and responses to coastal environmental problems. Case studies reported here illustrate the importance of human dimensions research. Incorporating such research into the scientific agenda – as well as into management decisions of public agencies concerned with natural resource management, environmental protection, and public health and welfare – requires the development of both strategic guidance and institutional capacity. The recent development of a multi-agency research strategy for HAB response and a strategic plan for human dimensions research represent two important steps in this direction.This paper was developed with partial support from NOAA’s National Centers for Coastal and Ocean Science

    Cyanobacterial bloom mitigation using proteins with high isoelectric point and chitosan-modified soil

    Get PDF
    A new environmental friendly method was developed for cyanobacterial blooms mitigation using local lake shore soil modified by protein with high isoelectric point (pI) and chitosan jointly. Results suggested that 5 mg/L lysozyme (pI ≈ 11) and 100 mg/L bromelain (pI ≈ 9.5) modified 10 mg/L soil can both reduce the surface charge of microcystis aeruginosa, the dominant species forming cyanobacterial blooms, from -26 mv to -10 mv and remove 73% and 60% of algal cells in 30 min, respectively. The limited improvement of removal efficiency was due to the small flocs (< 60 μm) formed by charge neutralization, which need more than 90 min to settle in static condition. However, when the small flocs were linked and bridged by the other modifier, chitosan with long polymer chain, large flocs of about 800 μm and 300 μm were fomed and more than 80% of algal cells were removed in 5 min and 30 min by lysozyme-chitosan modified soil and bromelain-chitosan modified soil, respectively. The lower removal ability of bromelain-modified soil was due to the lower charge density leading to less powerful in destabilization of algal cells. Depending on the bi-component modification mechanism including charge neutralization of proteins with high pI and netting and bridging function of chitosan with long polymer chain, it is possible to flocculate cyanobacterial blooms in natural waters effectively using locally available materials

    Trophic transfer of brevetoxins to the benthic macrofaunal community during a bloom of the harmful dinoflagellate Karenia brevis in Sarasota Bay, Florida

    No full text
    Harmful algal blooms can cause mass mortalities of top predators such as fish, marine mammals and seabirds but the food web transfer from toxic phytoplankton to these organisms has not been fully elucidated. Macrobenthic invertebrates in coastal waters, including bivalve suspension- and deposit-feeders, carnivorous gastropods, deposit-feeding amphipods and polychaetes, are a major food source for a wide variety of predators and can thus play a critical role in the trophic transfer of algal toxins to higher trophic levels. The objective of this study was to investigate toxin accumulation in transplanted juvenile hard clams, Mercenaria mercenaria, a species naturally occurring in the region, and in various macrobenthic functional groups from Florida coastal waters during a natural bloom of the dinoflagellate, Karenia brevis, a producer of brevetoxins. Bloom concentrations in the water column ranged from 100 to 1200 cells ml 12\ub9 over the course of the experiment. This study revealed that these lipophilic toxins can be rapidly accumulated by both suspension- and deposit-feeding benthos, especially bivalve molluscs [1.9\u20132.8 \u3bcg PbTx-3 eq (g wet weight) 12\ub9]. Transplanted M. mercenaria rapidly accumulated toxins from the water column attaining 3c0.5 \u3bcg PbTx-3 eq (g wet tissue) 12\ub9 after only 4 h-exposure to the K. brevis bloom and a maximum value of 1.5 \ub1 0.2 \u3bcg PbTx-3 eq (g wet tissue) 12\ub9 after 72 h. Relatively high brevetoxin concentrations were also measured in co-occurring benthic carnivorous gastropods [1\u20132.6 \u3bcg PbTx-3 eq (g wet weight, WW) 12\ub9]. Mean toxin concentrations in polychaetes and crustaceans varied in the range 3c0.04\u20130.2 \u3bcg PbTx-3 eq (g WW) 12\ub9 over the study period, and thus were typically lower than in molluscs. This study demonstrated in situ toxin accumulation by benthic primary and secondary consumers during a natural Florida red tide. Accumulation by primary consumers may be highly variable in space and time (as shown in bivalves from the natural benthic community) and among taxonomic groups. Toxin transfer further up the food web will thus depend on the toxin level accumulated in prey, the number of pathways from which the predator may accumulate toxins and on possible biological magnification of lipophilic toxins. Overall, this study revealed qualitatively and quantitatively that benthic consumers of a number of taxa can serve as vectors for transporting brevetoxins within the food web.Peer reviewed: YesNRC publication: Ye
    corecore