2,689 research outputs found

    Transportation Systems Evaluation

    Get PDF
    A methodology for the analysis of transportation systems consisting of five major interacting elements is reported. The analysis begins with the causes of travel demand: geographic, economic, and demographic characteristics as well as attitudes toward travel. Through the analysis, the interaction of these factors with the physical and economic characteristics of the transportation system is determined. The result is an evaluation of the system from the point of view of both passenger and operator. The methodology is applicable to the intraurban transit systems as well as major airlines. Applications of the technique to analysis of a PRT system and a study of intraurban air travel are given. In the discussion several unique models or techniques are mentioned: i.e., passenger preference modeling, an integrated intraurban transit model, and a series of models to perform airline analysis

    Modern Michelson-Morley experiment using cryogenic optical resonators

    Full text link
    We report on a new test of Lorentz invariance performed by comparing the resonance frequencies of two orthogonal cryogenic optical resonators subject to Earth's rotation over 1 year. For a possible anisotropy of the speed of light c, we obtain 2.6 +/- 1.7 parts in 10^15. Within the Robertson-Mansouri-Sexl test theory, this implies an isotropy violation parameter beta - delta - 1/2 of -2.2 +/- 1.5 parts in 10^9, about three times lower than the best previous result. Within the general extension of the standard model of particle physics, we extract limits on 7 parameters at accuracies down to a part in 10^15, improving the best previous result by about two orders of magnitude

    Cosmologies with Null Singularities and their Gauge Theory Duals

    Get PDF
    We investigate backgrounds of Type IIB string theory with null singularities and their duals proposed in hep-th/0602107. The dual theory is a deformed N=4 Yang-Mills theory in 3+1 dimensions with couplings dependent on a light-like direction. We concentrate on backgrounds which become AdS_5 x S^5 at early and late times and where the string coupling is bounded, vanishing at the singularity. Our main conclusion is that in these cases the dual gauge theory is nonsingular. We show this by arguing that there exists a complete set of gauge invariant observables in the dual gauge theory whose correlation functions are nonsingular at all times. The two-point correlator for some operators calculated in the gauge theory does not agree with the result from the bulk supergravity solution. However, the bulk calculation is invalid near the singularity where corrections to the supergravity approximation become important. We also obtain pp-waves which are suitable Penrose limits of this general class of solutions, and construct the Matrix Membrane theory which describes these pp-wave backgrounds.Comment: 43 pages REVTeX and AMSLaTeX. v2: references adde

    Superconformal Black Hole Quantum Mechanics

    Full text link
    In recent work, the superconformal quantum mechanics describing D0 branes in the AdS_2xS^2xCY_3 attractor geometry of a Calabi-Yau black hole with D4 brane charges p^A has been constructed and found to contain a large degeneracy of chiral primary bound states. In this paper it is shown that the asymptotic growth of chiral primaries for N D0 branes exactly matches the Bekenstein-Hawking area law for a black hole with D4 brane charge p^A and D0 brane charge N. This large degeneracy arises from D0 branes in lowest Landau levels which tile the CY_3xS^2 horizon. It is conjectured that such a multi-D0 brane CFT1 is holographically dual to IIA string theory on AdS_2xS^2xCY_3.Comment: 8 page

    Electrodynamics with Lorentz-violating operators of arbitrary dimension

    Get PDF
    The behavior of photons in the presence of Lorentz and CPT violation is studied. Allowing for operators of arbitrary mass dimension, we classify all gauge-invariant Lorentz- and CPT-violating terms in the quadratic Lagrange density associated with the effective photon propagator. The covariant dispersion relation is obtained, and conditions for birefringence are discussed. We provide a complete characterization of the coefficients for Lorentz violation for all mass dimensions via a decomposition using spin-weighted spherical harmonics. The resulting nine independent sets of spherical coefficients control birefringence, dispersion, and anisotropy. We discuss the restriction of the general theory to various special models, including among others the minimal Standard-Model Extension, the isotropic limit, the case of vacuum propagation, the nonbirefringent limit, and the vacuum-orthogonal model. The transformation of the spherical coefficients for Lorentz violation between the laboratory frame and the standard Sun-centered frame is provided. We apply the results to various astrophysical observations and laboratory experiments. Astrophysical searches of relevance include studies of birefringence and of dispersion. We use polarimetric and dispersive data from gamma-ray bursts to set constraints on coefficients for Lorentz violation involving operators of dimensions four through nine, and we describe the mixing of polarizations induced by Lorentz and CPT violation in the cosmic-microwave background. Laboratory searches of interest include cavity experiments. We present the theory for searches with cavities, derive the experiment-dependent factors for coefficients in the vacuum-orthogonal model, and predict the corresponding frequency shift for a circular-cylindrical cavity.Comment: 58 pages two-column REVTeX, accepted in Physical Review

    The visual orbits of the spectroscopic binaries HD 6118 and HD 27483 from the Palomar Testbed Interferometer

    Full text link
    We present optical interferometric observations of two double-lined spectroscopic binaries, HD 6118 and HD 27483, taken with the Palomar Testbed Interferometer (PTI) in the K band. HD 6118 is one of the most eccentric spectroscopic binaries and HD 27483 a spectroscopic binary in the Hyades open cluster. The data collected with PTI in 2001-2002 allow us to determine astrometric orbits and when combined with the radial velocity measurements derive all physical parameters of the systems. The masses of the components are 2.65 +/- 0.27 M_Sun and 2.36 +/- 0.24 M_Sun for HD 6118 and 1.38 +/- 0.13 M_Sun and 1.39 +/- 0.13 M_Sun for HD 27483. The apparent semi-major axis of HD 27483 is only 1.2 mas making it the closest binary successfully observed with an optical interferometer.Comment: submitted to Ap

    Arago (1810): the first experimental result against the ether

    Get PDF
    95 years before Special Relativity was born, Arago attempted to detect the absolute motion of the Earth by measuring the deflection of starlight passing through a prism fixed to the Earth. The null result of this experiment gave rise to the Fresnel's hypothesis of an ether partly dragged by a moving substance. In the context of Einstein's Relativity, the sole frame which is privileged in Arago's experiment is the proper frame of the prism, and the null result only says that Snell's law is valid in that frame. We revisit the history of this premature first evidence against the ether theory and calculate the Fresnel's dragging coefficient by applying the Huygens' construction in the frame of the prism. We expose the dissimilar treatment received by the ray and the wave front as an unavoidable consequence of the classical notions of space and time.Comment: 16 pages. To appear in European Journal of Physic

    Decoherence, fluctuations and Wigner function in neutron optics

    Get PDF
    We analyze the coherence properties of neutron wave packets, after they have interacted with a phase shifter undergoing different kinds of statistical fluctuations. We give a quantitative (and operational) definition of decoherence and compare it to the standard deviation of the distribution of the phase shifts. We find that in some cases the neutron ensemble is more coherent, even though it has interacted with a wider (i.e. more disordered) distribution of shifts. This feature is independent of the particular definition of decoherence: this is shown by proposing and discussing an alternative definition, based on the Wigner function, that displays a similar behavior. We briefly discuss the notion of entropy of the shifts and find that, in general, it does not correspond to that of decoherence of the neutron.Comment: 18 pages, 7 figure

    Bounds on Lorentz and CPT Violation from the Earth-Ionosphere Cavity

    Full text link
    Electromagnetic resonant cavities form the basis of many tests of Lorentz invariance involving photons. The effects of some forms of Lorentz violation scale with cavity size. We investigate possible signals of violations in the naturally occurring resonances formed in the Earth-ionosphere cavity. Comparison with observed resonances places the first terrestrial constraints on coefficients associated with dimension-three Lorentz-violating operators at the level of 10^{-20} GeV.Comment: 8 pages REVTe

    Improved test of Lorentz Invariance in Electrodynamics using Rotating Cryogenic Sapphire Oscillators

    Get PDF
    We present new results from our test of Lorentz invariance, which compares two orthogonal cryogenic sapphire microwave oscillators rotating in the lab. We have now acquired over 1 year of data, allowing us to avoid the short data set approximation (less than 1 year) that assumes no cancelation occurs between the κ~e\tilde{\kappa}_{e-} and κ~o+\tilde{\kappa}_{o+} parameters from the photon sector of the standard model extension. Thus, we are able to place independent limits on all eight κ~e\tilde{\kappa}_{e-} and κ~o+\tilde{\kappa}_{o+} parameters. Our results represents up to a factor of 10 improvement over previous non rotating measurements (which independently constrained 7 parameters), and is a slight improvement (except for κ~eZZ\tilde{\kappa}_{e-}^{ZZ}) over results from previous rotating experiments that assumed the short data set approximation. Also, an analysis in the Robertson-Mansouri-Sexl framework allows us to place a new limit on the isotropy parameter PMM=δβ+1/2P_{MM}=\delta-\beta+{1/2} of 9.4(8.1)×10119.4(8.1)\times10^{-11}, an improvement of a factor of 2.Comment: Accepted for publication in Phys. Rev.
    corecore