101 research outputs found

    Analysis of melt-textured YBCO with nanoscale inclusions

    Get PDF
    Recently, particles with the chemical composition Y2Ba 4CuMOx where M U, Nb, Zr, etc., and sizes in the range of 50 - 200 nm have been generated within the YBCO matrix of bulk, melt-processed superconductors in order to serve as effective flux pinning sites. By means of AFM and electron backscatter diffraction (EBSD) measurements, we analyse the spatial distribution and the size distribution of these nanoparticles within the superconducting YBCO matrix

    EBSD characterisation of Y2Ba4CuUOx phase in melttextured YBCO with addition of depleted uranium oxide

    Get PDF
    Melt-textured YBCO samples processed with added Y2O3 and depleted uranium oxide (DU) contain nano-particles, which have been identified previously as Y2Ba4CuUOx (U-411). This phase has a cubic unit cell, which is clearly distinct from the orthorhombic Y-123 and Y-211 phases within the YBCO system. In samples with a high amount of DU addition (0.8 wt-% DU), U-2411 particles have sizes between 200 nm and several νm, so identification of the Kikuchi patterns of this phase becomes possible. Together with a parallel EDX analysis, the particles embedded in the Y-123 matrix can be identified unambiguously. In this way, a three-phase EBSD scan becomes possible, allowing also the identification of nanometre-sized particles in the sample microstructure

    Investigation of grain orientations of melt-textured HTSC with addition of uranium oxide, Y2O3 and Y2BaCuO5

    Get PDF
    Local grain orientations were studied in melt-textured YBCO samples processed with various amounts of depleted uranuim oxide (DU) and Y 2O3 by means of electron backscatter diffraction (EBSD) analysis. The addition of DU leads to the formation of Ucontaining nanoparticles (Y2Ba4CuUOx) with sizes of around 200 nm, embedded in the superconducting Y-123 matrix. The orientation of the Y 2BaCuO5 (Y-211) particles, which are also present in the YBCO bulk microstructure, is generally random as is the case in other melttextured Y-123 samples. The presence of Y-211 particles, however, also affects the orientation of the Y-123 matrix in these samples

    Pinning Force Scaling Analysis of Polycrystalline MgB2

    Get PDF
    Flux pinning force scaling f=Fp/Fp,max vs. h = Ha/Hirr was performed on a variety of pure MgB2 samples, including a spark plasma sintered (SPS) one and a series of samples sintered at various reaction temperatures ranging between 775 and 950 ∘C. The SPS sample exhibits a well-developed scaling at all temperatures, and also the sintered samples prepared at 950 ∘C; however, the obtained peak positions of the pinning force scalings are distinctly different: The SPS sample reveals dominating pinning at grain boundaries, whereas the dominating pinning for the other one is point-pinning. All other samples studied reveal an apparent non-scaling of the pinning forces. The obtained pinning parameters are discussed in the framework of the Dew–Hughes’ pinning force scaling approach

    Anisotropic superconducting strip in an oblique magnetic field

    Full text link
    The critical state of a thin superconducting strip in an oblique applied magnetic field H_a is analyzed without any restrictions on the dependence of the critical current density j_c on the local magnetic induction {\bf B}. In such a strip, j_c is not constant across the thickness of the sample and differs from J_c/d, where J_c is the critical sheet current. It is shown that in contrast to the case of {\bf B}-independent j_c, the profiles H_z(x) of the magnetic-field component perpendicular to the strip plane generally depend on the in-plane component H_{ax} of the applied magnetic field H_a, and on how H_a is switched on. On the basis of this analysis, we explain how and under what conditions one can extract j_c({\bf B}) from the magnetic-field profiles H_z(x) measured by magneto-optical imaging or by Hall-sensor arrays at the upper surface of the strip.Comment: 7 pages with 4 figure

    Microstructure and paramagnetic Meissner effect of YBa2Cu3Oy nanowire networks

    Get PDF
    The microstructure and magnetic characterizations of non-woven, fabric-like YBa2Cu3Oy (YBCO) nanofiber mats are reported. The samples were produced by solution blow spinning (SBS), starting from a sol-gel solution of the precursor materials in polyvinylpyrrolidone. In the present work, the nanowire network samples were morphologically characterized by scanning electron microscopy, and the superconducting properties were measured by magnetometry. An interesting feature is the appearance of a paramagnetic Meissner effect (PME) when field-cooling, firstly verified in that sort of sample. The PME appears only in very small applied magnetic fields, which is similar to previous observations of the PME on an artificially granular YBCO thin film, but distinctly different from bulk samples investigated in the literature. Thus, we explain the PME by flux trapping within the voids of the nanoporous structure of the nanofiber mats

    Central peak position in magnetization loops of high-TcT_c superconductors

    Full text link
    Exact analytical results are obtained for the magnetization of a superconducting thin strip with a general behavior J_c(B) of the critical current density. We show that within the critical-state model the magnetization as function of applied field, B_a, has an extremum located exactly at B_a=0. This result is in excellent agreement with presented experimental data for a YBCO thin film. After introducing granularity by patterning the film, the central peak becomes shifted to positive fields on the descending field branch of the loop. Our results show that a positive peak position is a definite signature of granularity in superconductors.Comment: $ pages, 6 figure

    Hydrodynamic Instability of the Flux-antiflux Interface in Type-II Superconductors

    Full text link
    The macroturbulence instability observed in fluxline systems during remagnetization of superconductors is explained. It is shown that when a region with flux is invaded by antiflux the interface can become unstable if there is a relative tangential flux motion. This condition occurs at the interface when the viscosity is anisotropic, e.g., due to flux guiding by twin boundaries in crystals. The phenomenon is similar to the instability of the tangential discontinuity in classical hydrodynamics. The obtained results are supported by magneto-optical observations of flux distribution on the surface of a YBCO single crystal with twins.Comment: 12 pages, 3 figures, submitted to Physical Review Letter
    corecore