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Abstract The microstructure and magnetic charac-
terizations of non-woven, fabric-like YBa2Cu3Oy

(YBCO) nanofiber mats are reported. The samples
were produced by solution blow spinning (SBS), start-
ing from a sol-gel solution of the precursor mate-
rials in polyvinylpyrrolidone. In the present work,
the nanowire network samples were morphologically
characterized by scanning electron microscopy, and
the superconducting properties were measured by
magnetometry. An interesting feature is the appear-
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ance of a paramagnetic Meissner effect (PME) when
field-cooling, firstly verified in that sort of sample.
The PME appears only in very small applied magnetic
fields, which is similar to previous observations of the
PME on an artificially granular YBCO thin film, but
distinctly different from bulk samples investigated in
the literature. Thus, we explain the PME by flux trap-
ping within the voids of the nanoporous structure of
the nanofiber mats.

Keywords Paramagnetic Meissner effect · Solution
blow spinning · YBCO nanofiber mats

Introduction

Since the discovery of ceramic superconductors
(HTSc), a variety of applications have been proposed
(Seeber 1999; Seidel 2015). However, there are still
persistent implementation difficulties of the present
day HTSc materials, which are related to low transport
current densities, high ac-losses, their brittleness, and
the high production costs (Bray 2009). For massive,
bulk materials required for trapped field applications
(Cardwell et al. 2004), the oxygenation processes and
the cooling of the samples can also be a problem
(Reddy and Schmitz 2002; Haran et al. 2017). Thus,
focusing on a more accessible material to be cooled,
high-porous superconductors can be good specimens to
be studied (Koblischka and Koblischka-Veneva 2018).
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In this point of view, superconducting nanowire net-
works of YBa2Cu3O7−δ (YBCO) were prepared by
the solution blow spinning (SBS) technique (Daris-
totle et al. 2016; da Costa Farias et al. 2015; Cheng
et al. 2014). The resulting samples are fabric-like
networks or fiber mats of nanowires, being very
similar to the nanowire network samples fabricated
by electrospinning of YBCO (Duarte et al. 2015)
and Bi2Sr2CaCu2O8+δ (Bi-2212) (Koblischka et al.
2016a; b; Zeng et al. 2017a; b). All these nanofiber
mats are nanoporous materials which are character-
ized by their extremely low weight (the typical density
of the samples is only about 0.05 g/cm3).

The magnetic properties of these nanofiber mat
samples have shown already a quite peculiar behav-
ior in previous publications (Koblischka et al. 2016a,
b; Zeng et al. 2017a; b). This includes a well-develop-
ed granular character of the magnetization loops, a
superconducting transition temperature, Tc, which is
commonly smaller than that of the bulk counterparts,
and the presence of dia- or paramagnetic moments
distorting the magnetization loops (MHLs).

In the present contribution, we show that the YBCO
nanofiber mats exhibit the paramagnetic Meisser
effect (abbreviated PME), but in a distinctly different
appearance as compared to previous reports. Sev-
eral types of high-Tc superconductors have shown the
PME (Braunisch et al. 1992; Braunisch et al. 1993;
Rice and Sigrist 1995). The samples studied to exhibit
the PME were mostly Bi-2212 bulks, while the PME
was not observed in tape-like materials of the same
chemical composition. The observation of a similar
PME in conventional metallic superconductors like
Nb (Thompson et al. 1995; Půst et al. 1998; Geim
et al. 1998) speaks against explanations like d-wave
superconductivity and favors the giant vortex model
or flux trapping effects (Koshelev and Larkin 1995;
Moshchalkov et al. 1997). All these models for the
PME were reviewed in Ref. Li (2003).

In Ref. Koblischka et al. (2000), the PME was
observed on an artificially granular YBCO thin film
sample. This thin film sample (thickness 150 nm on
SrTiO3) was patterned into many disks by electron-
beam lithography (diameter 50 μm, contact width
3.5 μm), which were touching each other in order
to enable the flow of a transport current through the
disks. This type of sample was originally intended to

simulate the magnetic behavior of Bi-2212/Bi-2223
tapes, especially concerning the zero-field peak posi-
tion in the MHL (Koblischka et al. 1997; Koblischka
et al. 1999). Additionally, the PME was observed
in this sample, but in stark contrast to the bulk Bi-
2212 samples (Braunisch et al. 1992; Braunisch et al.
1993) only at very low applied magnetic fields in
the μT-range, and when applying larger fields, the
M(T )-curves recorded were again of the archetypal
type. This type of PME was ascribed in Ref. Kob-
lischka et al. (2000) to the field-trapping in the open
spaces between the disks. This artificially granular
thin film sample enables now a comparison to the
present microporous nanofiber mats of the same mate-
rial (YBCO), and thus, a conclusion of the origin
of the PME in the YBCO nanofiber mats can be
reached.

Thus, we focus here on details of the sample
microstructure and analyze the magnetic properties
of the SBS-prepared YBCO nanofiber mats by dis-
cussing the current flow in such nanoporous samples
in detail.

Experimental procedures

Sample preparation

A one-pot-like chemical route (Rotta et al. 2020) was
used to prepare the precursor solution. Yttrium-(III)-
acetate hydrate (C6H9O6 ·xH2O, 99.9% from Sigma),
barium acetate (C4H3BaO4, 99%), and copper-(II)-
acetate monohydrate (C4H6CuO4· H2O, 99%) both
from Sigma-Aldrich were stoichiometrically dis-
solved in a ratio Y:1-Ba:2-Cu:3 in a single vessel with
16.6 ml of solution. The used solvents were methanol
59.2 wt%, propionic acid 24 wt%, and acetic acid
16.8 wt%. After 5 min of stirring, polyvinylpyrroli-
done (PVP, 1 million 3 hundred thousand g/mol) in a
concentration of 5.75 wt% was gradually added in an
acetate:PVP weight ratio of 5:1. The precursor solu-
tion was stirred for 24 h in a hermetically closed vessel
to guarantee its stability, solubility, and homogene-
ity. Then, the solution was loaded in a 10-ml syringe
and spun using the solution blow spinning (SBS) tech-
nique as described in Refs. (Rotta et al. 2016; Rotta
et al. 2019) with an injection rate of 3 ml/h. The needle
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used was of type 25G (0.5-mm diameter) and the air
pressure was adjusted to 1 kPa with the collector set
to 40 cm, and the rotation speed at 40 rpm.

The green sample (as-collected fibers) was subse-
quently heat-treated at 100 ◦C for 1 h and 150 ◦C
for another hour. The subsequent heat treatment was
carried out under oxygen flux. The temperature was
ramped up at 1 ◦C/min up to 600 ◦C and kept there for
3 h, and then, at 3 ◦C/min to 925 ◦C and maintained
there for 1 h. After that, the temperature was decreased
at a rate of −3 ◦/min to 750 ◦C and remained there
for 6 h. In a final step, the temperature was decreased
at −3 ◦C/min to 450 ◦C. After 24 h, the gas flow
and the oven was turned off, reaching room tem-
perature by furnace thermal inertia. The constituent
phase was checked by means of x-ray diffraction (see
Fig. 2c), revealing a pure YBCO phase with only
minor secondary phases.

Microscopy

The scanning electron microscopy analysis was per-
formed in a JEOL 7000F SEM microscope equipped
with a TSL (TexSEM Labs, UT) analysis unit for
electron backscatter diffraction (EBSD). TEM inves-
tigations were performed using a JEOL JSM-2011
transmission electron microscope (200 kV, LaB6 cath-
ode). The samples intended for TEM and EBSD were
placed on a carbon-coated Cu-TEM grid.

Magnetic measurements

Magnetic measurements were performed using a
Quantum Design MPMS3 SQUID system equipped
with VSM option. The applied field was ±7 T (field
sweep rate 0.36 T/min). Additional measurements
were performed with a MPMS-5 SQUID magnetome-
ter including the ultra low-field option.1 Magnetic
fields smaller than 0.5 mT were generated by a Cu
coil, which is part of the ultra-low-field option. Scan
lengths of 1 cm and 4 cm were employed to test effects
of field inhomogeneity; magnetic moments were eval-
uated directly from the SQUID voltage output.

1Quantum Design, San Diego, CA 92121, models MPMS3 and
MPMS5S with ultra-low-field option

Results and discussion

Microstructural features

Figure 1a and b present the microstructure of the
YBCO nanofiber mat sample. In the low magnifica-
tion image (a), one can see a fiber mat with several
nanowires standing out of the plane. The inset presents
a piece of a fully reacted nanofiber mat. Note the
large size of such nanofiber mats which can easily
reach cm2 dimensions. The overall nanofiber mat is
a nanoporous superconductor, which is revealed in
Fig.1b, where one can see the arrangements of the
individual nanofibers and the numerous interconnects
between them. The samples consist of numerous, rel-
atively long (up to 10 μm) nanowires with an average
diameter of ≈ 560 nm, resulting in a non-woven fabric
with numerous interconnects between the individual
nanowires.

2 µm

1 cm

200 µm

(b)

(a)

Fig. 1 SEM images of the microstructure of the YBCO
nanofiber mats at various magnifications (× 100 (a), × 5000
(b)). The inset presents a piece of the fully reacted YBCO
nanofiber mat in an optical image
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Fig. 2 a Low-resolution, bright-field TEM image of the
nanowire structure revealing the YBCO grains and the intercon-
nects between the nanowires. b Grain size statistics obtained
from TEM dark and bright field images. c X-ray diffractogram
of the YBCO nanofiber mat sample

Figure 2a shows a low-resolution TEM image
revealing the arrangement of the YBCO grains. From
some fibers, there are YBCO grains sticking out,

resulting in a rough surface of the nanowires. An anal-
ysis of EBSD was attempted as in Ref. Koblischka-
Veneva et al. (2018), but only on some places Kikuchi
patterns could be obtained, which is a direct conse-
quence of the surface roughness. The low TEM res-
olution for this images was chosen to better visualize
the numerous interconnects between the nanowires,
which are important for the flow of the transport
currents in the nanowire fiber mats. Also, such inter-
connects may comprise more than two nanowires.
Furthermore, we can see here that the nanowires them-
selves are formed by superconducting YBCO grains,
which are stacked together. Figure 2b shows the deter-
mination of the average grain size by a Gauss fit. The
average YBCO grain size is ∼ 28 nm as determined
from several bright and dark field TEM images to
enable the distinction of grains and subgrains. In an
extreme case, a single nanowire can be as thin as one
single YBCO grain. The fully reacted nanofiber mats
are quite brittle, and it is possible to separate individ-
ual nanowires by means of focused ion-beam cutting
from the remainder of the sample. Figure 2c presents
the x-ray diffractogram and the comparison with the
JCPDS file for fully oxygenated YBCO. The analy-
sis reveals that the YBCO nanofiber mats are pure
YBCO with only some minor secondary phases begin
present. More details of the preparation of the YBCO
nanowires by SBS and the optimization of their mor-
phology and yield were previously reported in Ref.
Rotta et al. (2020).

Magnetization data and PME

In Fig. 3, the m(H)-curves of the SBS-YBCO sam-
ple are presented. We can see that at low temperatures
(4.2 K, 10 K), a superconducting diamagnetic signal is
obtained. The entire magnetization loop is, however,
overlaid with a paramagnetic contribution. This para-
magnetic signal may stem from the copper ions. On
increasing the temperature, the diamagnetic contribu-
tion is reduced. At T = 60 K, the m(H)-loop hardly
reveals a superconducting contribution, except in the
center. All m(H)-loops recorded on the nanofiber
mats are strongly asymmetric, which is a consequence
of the granularity. When comparing these M(H)-
loops to those of electrospun Bi-2212 nanofiber mats
(Koblischka et al. 2016b), one can notice that the gran-
ularity/asymmetry is much stronger for the present
YBCO nanofiber mats as for the Bi-2212 samples.
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Fig. 3 Magnetization loops measured at T = 4.2 K (a), 10
K (b), and 60 K (c). Note the strong granular character of the
MHLs (asymmetric shape) and the presence of a paramagnetic
moment, which is overlaid on the superconducting signal

Figure 4 presents FCC (field-cool cooling) mea-
surements in two selected applied magnetic fields,
which clearly reveal the different behavior of the sam-
ple in the μT-range and mT-range fields. The onset of
superconductivity in the YBCO nanowire fiber mat is
observed at 91 K, which is similar to the bulk coun-
terparts. In applied magnetic fields above 0.5 mT, the
m(T ) signal stays always negative as it is expected
from a superconducting sample, which is in strong

contrast to the PME measurements on the bulk Bi-
2212 or Nb. At T < 10 K (blue dotted circle), there is
an evident upturn of the Meissner curve. This upturn
of m(T ) is again due to the paramagnetic contribu-
tion of copper, which is often seen on m(T ) curves of
YBCO samples (Luzhbin et al. 2004). A paramagnetic
Meissner response is observed in applied magnetic
fields < 0.35 mT; however, the magnitude of the PME
is very small when comparing the magnetic moment
with those recorded on the bulk Bi-2212 or Nb sam-
ples (see Refs. Braunisch et al. (1993) and Půst et al.
(1998)). The inset to Fig. 4 shows a magnification of
the PME close to Tc. Here, we must note that m(T )

of the PME is always positive right from Tc, which
is again contrasting the PME of the bulk Bi-2212 or
Nb samples (Braunisch et al. 1993; Půst et al. 1998)),
where m(T ) starts towards negative values at the onset
of superconductivity and then turns towards positve
values at a temperature, T ∗. This change of direction
of m(T ) can be observed there on both FCC and FCW
curves, whereas in the present case, the FCC and FCW
curves practically coincide.

Figure 5a presents more PME measurements
in several applied magnetic fields on the YBCO
nanofiber mat sample. Reducing the applied magnetic
field from 500 to 45 μT creates a much more pos-
itive magnetic moment, which saturates at 45 μT.
Even smaller fields (we can apply 4.5 μT) cause prac-
tically the same curve. These measurements were,
however, very noisy, so we omitted them for clarity.
Furthermore, Fig. 5a also shows the zero-field cooled
m(T )-signal (cooling the sample down to 2 K, and
then applying the denoted field), which is completely
negative without any special feature.

Thus, the PME of the YBCO nanofiber mats
may be purely due to flux trapping effects in the
open spaces between the nanowires like discussed in
Refs. (Koshelev and Larkin 1995; Moshchalkov et al.
1997). Furthermore, the resulting PME is small due
to the nanosize of the superconducting current loops
involved. Here, we must note that there are currents
flowing through the entire sample perimeter (shield-
ing currents), but there are also current loops around
the internal pores and current loops in each super-
conducting YBCO grain (dos Santos et al. 2006). As
the grain boundaries (GBs) in YBCO are showing a
much more pronounced weak-link character as in the
Bi-based superconductors (Hilgenkamp and Mannhart
2002; Hensel et al. 1995), the currents between the
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Fig. 4 m(T )-behavior of
the YBCO nanowire fiber
mat when field-cooling the
sample in 2 mT applied
field (red line) and 350 μT
(black line). The inset gives
a magnification around Tc.
Note here that the PME
signal always stays positive
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grains and through the interconnects are much smaller
as the intragranular currents in the sample.

Now it remains the question why we did not
observe a PME in the Bi-2212 nanowire samples stud-
ied previously. This may be explained in part regard-
ing the different GB characteristics but is mainly due
to the different temperature behavior of the current
density of the two materials: In Bi-2212, there is a 3D-
2D transition at ∼ 50 K (Koblischka and Sosnowski
2005), and as a result, the critical current density is
much reduced at elevated temperatures close to Tc as
for YBCO, which stays 3D-like up to Tc. This is due

to the fact that the intragranular currents in YBCO are
much stronger at elevated temperatures as compared
to Bi-2212.

To further manifest the origin of the PME in
the YBCO nanofiber mat samples, we compare the
present data with the PME of the artificially granu-
lar YBCO thin film sample, which were published
in Ref. Koblischka et al. (2000). The dimensions of
this thin film sample are as follows: thickness 150 nm
on SrTiO3 substrate, patterned into ∼ 8000 disks by
electron-beam lithography (diameter of the disks 50
μm, contact width w = 3.5 μm). Figure 5a and b show

Fig. 5 Comparison of the
PME of the YBCO
nanofiber mats (a) to the
artificially granular YBCO
thin film sample patterned
by electron-beam
lithography (b). Note the
similarity of the PME effect
in the two types of samples
as in both cases, the PME
appears only at very low
applied magnetic fields, and
above a certain applied
field, the FCC curves do
exhibit the archetypal shape
again

(a)                                 (b)
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the comparison of the PME data. The magnetic and
magneto-optical properties of the artificially granular
YBCO thin film sample were discussed in detail in
Refs. (Koblischka et al. 1997; Koblischka et al. 1999).
There are, however, no weak-links between the YBCO
disks, only the current path is confined to the contact
width, w.

Both samples exhibit the PME in a remarkably sim-
ilar way. At low magnetic fields in the μT-range, the
paramagnetic signal is strong. Increasing the applied
magnetic field leads to a smaller PME, until the PME
completely vanishes for fields > 500 μT. All higher
applied magnetic fields lead to an archetypal behav-
ior. For the ZFC curves, always a negative signal is
obtained. Furthermore, both samples do not exhibit the
characteristics of the PME seen on bulk Bi-2212 and
Nb: The PME signal is positive right from the onset
of superconductivity and does not go slightly nega-
tive before turning up towards positive values. All this
similarity of the PME leads straightforwardly to the

conclusion that the PME in these two types of samples
has the same origin.

Finally, Fig. 6a gives a schematic sketch of the cur-
rent flow in the nanofiber mat. Supercurrents shielding
the space in between the individual nanowires and
shielding the entire sample perimeter (inter-wire cur-
rents) must flow across the interconnects as indicated
by (inter-wire currents, jc,inter-wire). These inter-
connects are playing a very important role for the
superconducting performance of the nanofiber mats,
and previous resistance measurements on such sam-
ples (Koblischka et al. 2016a) have shown that such
currents can flow even in 10 T applied magnetic field,
which is hardly possible in standard, polycrystalline
samples. Inside a nanowire, the supercurrents can
flow inside the YBCO grains (intragranular currents,
jc,intra), and along the nanowire length via the grain
boundaries (intergranular currents, jc,inter) as depicted
in Fig. 6b. According to the results presented in Ref.
Koblischka et al. (2016a), we have jc,intra > jc,inter �

(a)

(b)
(d)

(c)

Fig. 6 a Schematics of the supercurrent flow of the entire
nanofiber mat sample (inter-wire currents), and b the current
flow within an individual nanowire (intergranular and intragran-
ular currents). The current flow is indicated using red arrows
( ). c The supercurrent flow in the artificially granular YBCO

thin film. In (c), the layout of the artificially granular thin film
sample is sketched. In the upper row of circles, the definition of
the contact width, w, is indicated. Finally, in (d), a photograph
of the realized YBCO thin film sample is presented consisting
of about 8000 disks
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jc,inter-wire, which reflects the negative influence of
the GBs on the supercurrents as well as the positive
contribution of the interconnects. These three current
contributions (i.e., one more as in a common sintered,
polycrystalline sample) describe the current flow in
the nanofiber mats.

Figure 6c illustrates the current flow in the artifi-
cially granular thin film. The currents can flow within
an individual disk, around the entire structure via the
contact area w as indicated, and also around the open
spaces in between the disks, which can be shielded
by small current loops. Thus, the current flow in
this special thin film sample is principally similar to
that of the nanofiber mats. The characteristics of the
first two types of currents were demonstrated in Ref.
Koblischka et al. (1999) using magneto-optic imag-
ing. Finally, Fig. 6d gives an optical image of the
realized artificially granular thin film sample. Here,
we have to note that the superconducting disks are
arranged in a single plane, and all the empty spaces
between the disks have the same geometry. In con-
trast, the nanofiber mat is a true 3D arrangement of
the nanowires, and the voids between the nanowires
are fully irregular. These features and the very strong
currents of an epitaxial YBCO thin film are responsi-
ble that the magnitude of m(T ) of both sample types
is similar, even though there is less superconducting
material in the thin film sample. Both sample types
have in common that the currents can shield the open
spaces in the structure. Thus, we may conclude here
that the trapping of flux in these spaces is responsible
for this type of PME.

Conclusion

We have presented magnetization data of YBCO
nanofiber mats prepared by the solution blow spinning
technique. The m(H)-curves reveal strong granularity
and an onset of superconductivity at 91 K. Performing
field-cooling in small applied magnetic fields in the
μ-T range, the YBCO nanofiber mats reveal the PME,
but the properties of the PME are similar to that of an
artificially granular YBCO thin film sample, and not
to bulk Bi-2212 or Nb. This points to a PME being
entirely due to flux trapping in the spaces in between
the nanowires.
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