236 research outputs found

    Kerr-Schild spacetimes with (A)dS background

    Full text link
    General properties of Kerr-Schild spacetimes with (A)dS background in arbitrary dimension are studied. It is shown that the geodetic Kerr-Schild vector k is a multiple WAND of the spacetime. Einstein Kerr-Schild spacetimes with non-expanding k are shown to be of Weyl type N, while the expanding spacetimes are of type II or D. It is shown that this class of spacetimes obeys the optical constraint. This allows us to solve Sachs equation, determine r-dependence of boost weight zero components of the Weyl tensor and discuss curvature singularities.Comment: 17 pages, minor change

    Some remarks on degenerate hypoelliptic Ornstein-Uhlenbeck operators

    Get PDF
    37 pages, 3 figuresInternational audienceWe study degenerate hypoelliptic Ornstein-Uhlenbeck operators in L2L^2 spaces with respect to invariant measures. The purpose of this article is to show how recent results on general quadratic operators apply to the study of degenerate hypoelliptic Ornstein-Uhlenbeck operators. We first show that some known results about the spectral and subelliptic properties of Ornstein-Uhlenbeck operators may be directly recovered from the general analysis of quadratic operators with zero singular spaces. We also provide new resolvent estimates for hypoelliptic Ornstein-Uhlenbeck operators. We show in particular that the spectrum of these non-selfadjoint operators may be very unstable under small perturbations and that their resolvents can blow-up in norm far away from their spectra. Furthermore, we establish sharp resolvent estimates in specific regions of the resolvent set which enable us to prove exponential return to equilibrium

    Generalization of the Geroch-Held-Penrose formalism to higher dimensions

    Full text link
    Geroch, Held and Penrose invented a formalism for studying spacetimes admitting one or two preferred null directions. This approach is very useful for studying algebraically special spacetimes and their perturbations. In the present paper, the formalism is generalized to higher-dimensional spacetimes. This new formalism leads to equations that are considerably simpler than those of the higher-dimensional Newman-Penrose formalism employed previously. The dynamics of p-form test fields is analyzed using the new formalism and some results concerning algebraically special p-form fields are proved.Comment: 24 page

    Newman-Penrose formalism in higher dimensions: vacuum spacetimes with a non-twisting geodetic multiple Weyl aligned null direction

    Full text link
    Vacuum spacetimes admitting a non-twisting geodetic multiple Weyl aligned null direction (WAND) are analyzed in arbitrary dimension using recently developed higher-dimensional Newman-Penrose (NP) formalism. We determine dependence of the metric and of the Weyl tensor on the affine parameter r along null geodesics generated by the WAND for type III and N spacetimes and for a special class of type II and D spacetimes, containing e.g. Schwarzschild-Tangherlini black holes and black strings and branes. For types III and N, all metric components are at most quadratic polynomials in r while for types II and D the r-dependence of the metric as well as of the Weyl tensor is determined by an integer m corresponding to the rank of the expansion matrix S_{ij}. It is shown that for non-vanishing expansion, all these spacetimes contain a curvature singularity. As an illustrative example, a shearing expanding type N five-dimensional vacuum solution is also re-derived using higher-dimensional NP formalism. This solution can be, however, identified with a direct product of a known four-dimensional type N metric with an extra dimension.Comment: 25 pages, version to be published in Class. Quantum Grav. (expanded -background material included, 3 references added, small change in notation

    General Kundt spacetimes in higher dimensions

    Full text link
    We investigate a general metric of the Kundt class of spacetimes in higher dimensions. Geometrically, it admits a non-twisting, non-shearing and non-expanding geodesic null congruence. We calculate all components of the curvature and Ricci tensors, without assuming any specific matter content, and discuss algebraic types and main geometric constraints imposed by general Einstein's field equations. We explicitly derive Einstein-Maxwell equations, including an arbitrary cosmological constant, in the case of vacuum or possibly an aligned electromagnetic field. Finally, we introduce canonical subclasses of the Kundt family and we identify the most important special cases, namely generalised pp-waves, VSI or CSI spacetimes, and gyratons.Comment: 15 page

    On higher dimensional Einstein spacetimes with a warped extra dimension

    Full text link
    We study a class of higher dimensional warped Einstein spacetimes with one extra dimension. These were originally identified by Brinkmann as those Einstein spacetimes that can be mapped conformally on other Einstein spacetimes, and have subsequently appeared in various contexts to describe, e.g., different braneworld models or warped black strings. After clarifying the relation between the general Brinkmann metric and other more specific coordinate systems, we analyze the algebraic type of the Weyl tensor of the solutions. In particular, we describe the relation between Weyl aligned null directions (WANDs) of the lower dimensional Einstein slices and of the full spacetime, which in some cases can be algebraically more special. Possible spacetime singularities introduced by the warp factor are determined via a study of scalar curvature invariants and of Weyl components measured by geodetic observers. Finally, we illustrate how Brinkmann's metric can be employed to generate new solutions by presenting the metric of spinning and accelerating black strings in five dimensional anti-de Sitter space.Comment: 14 pages, minor changes in the text, mainly in Section 2.

    Ricci identities in higher dimensions

    Get PDF
    We explore connections between geometrical properties of null congruences and the algebraic structure of the Weyl tensor in n>4 spacetime dimensions. First, we present the full set of Ricci identities on a suitable "null" frame, thus completing the extension of the Newman-Penrose formalism to higher dimensions. Then we specialize to geodetic null congruences and study specific consequences of the Sachs equations. These imply, for example, that Kundt spacetimes are of type II or more special (like for n=4) and that for odd n a twisting geodetic WAND must also be shearing (in contrast to the case n=4).Comment: 8 pages. v2: typo corrected between Propositions 2 and 3. v3: typo in the last term in the first line of (11f) corrected, missing term on the r.h.s. of (11p) added, first sentence between Propositions 2 and 3 slightly change

    Perturbations of higher-dimensional spacetimes

    Full text link
    We discuss linearized gravitational perturbations of higher dimensional spacetimes. For algebraically special spacetimes (e.g. Myers-Perry black holes), we show that there exist local gauge invariant quantities linear in the metric perturbation. These are the higher dimensional generalizations of the 4d Newman-Penrose scalars that (in an algebraically special vacuum spacetime) satisfy decoupled equations of motion. We show that decoupling occurs in more than four dimensions if, and only if, the spacetime admits a null geodesic congruence with vanishing expansion, rotation and shear. Decoupling of electromagnetic perturbations occurs under the same conditions. Although these conditions are not satisfied in black hole spacetimes, they are satisfied in the near-horizon geometry of an extreme black hole.Comment: 21 pages (v2:Minor corrections, accepted by CQG.

    On the algebraic classification of spacetimes

    Full text link
    We briefly overview the Petrov classification in four dimensions and its generalization to higher dimensions.Comment: Submitted to Journal of Physics, conference series, proceedings of 4th meeting on constrained dynamics and quantum gravity, 12-16 September 2005, Sardinia, Ital
    corecore