We investigate a general metric of the Kundt class of spacetimes in higher
dimensions. Geometrically, it admits a non-twisting, non-shearing and
non-expanding geodesic null congruence. We calculate all components of the
curvature and Ricci tensors, without assuming any specific matter content, and
discuss algebraic types and main geometric constraints imposed by general
Einstein's field equations. We explicitly derive Einstein-Maxwell equations,
including an arbitrary cosmological constant, in the case of vacuum or possibly
an aligned electromagnetic field. Finally, we introduce canonical subclasses of
the Kundt family and we identify the most important special cases, namely
generalised pp-waves, VSI or CSI spacetimes, and gyratons.Comment: 15 page