Abstract

We investigate a general metric of the Kundt class of spacetimes in higher dimensions. Geometrically, it admits a non-twisting, non-shearing and non-expanding geodesic null congruence. We calculate all components of the curvature and Ricci tensors, without assuming any specific matter content, and discuss algebraic types and main geometric constraints imposed by general Einstein's field equations. We explicitly derive Einstein-Maxwell equations, including an arbitrary cosmological constant, in the case of vacuum or possibly an aligned electromagnetic field. Finally, we introduce canonical subclasses of the Kundt family and we identify the most important special cases, namely generalised pp-waves, VSI or CSI spacetimes, and gyratons.Comment: 15 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019