95 research outputs found

    Propagation of tau pathology in Alzheimer’s disease: identification of novel therapeutic targets

    Get PDF
    Accumulation and aggregation of the microtubule-associated protein tau are a pathological hallmark of neurodegenerative disorders such as Alzheimer’s disease (AD). In AD, tau becomes abnormally phosphorylated and forms inclusions throughout the brain, starting in the entorhinal cortex and progressively affecting additional brain regions as the disease progresses. Formation of these inclusions is thought to lead to synapse loss and cell death. Tau is also found in the cerebrospinal fluid (CSF), and elevated levels are a biomarker for AD. Until recently, it was thought that the presence of tau in the CSF was due to the passive release of aggregated tau from dead or dying tangle-bearing neurons. However, accumulating evidence from different AD model systems suggests that tau is actively secreted and transferred between synaptically connected neurons. Transgenic mouse lines with localized expression of aggregating human tau in the entorhinal cortex have demonstrated that, as these animals age, tau becomes mislocalized from axons to cell bodies and dendrites and that human tau-positive aggregates form first in the entorhinal cortex and later in downstream projection targets. Numerous in vitro and in vivo studies have provided insight into the mechanisms by which tau may be released and internalized by neurons and have started to provide insight into how tau pathology may spread in AD. In this review, we discuss the evidence for regulated tau release and its specific uptake by neurons. Furthermore, we identify possible therapeutic targets for preventing the propagation of tau pathology, as inhibition of tau transfer may restrict development of tau tangles in a small subset of neurons affected in early stages of AD and therefore prevent widespread neuron loss and cognitive dysfunction associated with later stages of the disease

    Anuloplastia mitral por sutura externa subanular em corações excisados de suínos

    Get PDF
    O artigo não apresenta resumo

    Amyloid accelerates tau propagation and toxicity in a model of early Alzheimer's disease

    Get PDF
    Introduction: In early stages of Alzheimer’s disease (AD), neurofibrillary tangles (NFT) are largely restricted to the entorhinal cortex and medial temporal lobe. At later stages, when clinical symptoms generally occur, NFT involve widespread limbic and association cortices. At this point in the disease, amyloid plaques are also abundantly distributed in the cortex. This observation from human neuropathological studies led us to pose two alternative hypotheses: that amyloid in the cortex is permissive for the spread of tangles from the medial temporal lobe, or that these are co-occurring but not causally related events simply reflecting progression of AD pathology. Results: We now directly test the hypothesis that cortical amyloid acts as an accelerant for spreading of tangles beyond the medial temporal lobe. We crossed rTgTauEC transgenic mice that demonstrate spread of tau from entorhinal cortex to other brain structures at advanced age with APP/PS1 mice, and examined mice with either NFTs, amyloid pathology, or both. We show that concurrent amyloid deposition in the cortex 1) leads to a dramatic increase in the speed of tau propagation and an extraordinary increase in the spread of tau to distal brain regions, and 2) significantly increases tau-induced neuronal loss. Conclusions: These data strongly support the hypothesis that cortical amyloid accelerates the spread of tangles throughout the cortex and amplifies tangle-associated neural system failure in AD. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0199-x) contains supplementary material, which is available to authorized users

    Tau association with synaptic vesicles causes presynaptic dysfunction

    Get PDF
    Tau is implicated in more than 20 neurodegenerative diseases, including Alzheimer's disease. Under pathological conditions, Tau dissociates from axonal microtubules and missorts to pre- and postsynaptic terminals. Patients suffer from early synaptic dysfunction prior to Tau aggregate formation, but the underlying mechanism is unclear. Here we show that pathogenic Tau binds to synaptic vesicles via its N-terminal domain and interferes with presynaptic functions, including synaptic vesicle mobility and release rate, lowering neurotransmission in fly and rat neurons. Pathological Tau mutants lacking the vesicle binding domain still localize to the presynaptic compartment but do not impair synaptic function in fly neurons. Moreover, an exogenously applied membrane-permeable peptide that competes for Tau-vesicle binding suppresses Tau-induced synaptic toxicity in rat neurons. Our work uncovers a presynaptic role of Tau that may be part of the early pathology in various Tauopathies and could be exploited therapeutically.status: publishe

    Motor-Coordination-Dependent Learning, More than Others, Is Impaired in Transgenic Mice Expressing Pseudorabies Virus Immediate-Early Protein IE180

    Get PDF
    The cerebellum in transgenic mice expressing pseudorabies virus immediate-early protein IE180 (TgIE96) was substantially diminished in size, and its histoarchitecture was severely disorganized, resulting in severe ataxia. TgIE96 mice can therefore be used as an experimental model to study the involvement of cerebellar circuits in different learning tasks. The performance of three-month-old TgIE96 mice was studied in various behavioral tests, including associative learning (classical eyeblink conditioning), object recognition, spatial orientation (water maze), startle response and prepulse inhibition, and passive avoidance, and compared with that of wild-type mice. Wild-type and TgIE96 mice presented similar reflexively evoked eyeblinks, and acquired classical conditioned eyelid responses with similar learning curves for both trace and delay conditioning paradigms. The two groups of mice also had similar performances during the object recognition test. However, they showed significant differences for the other three tests included in this study. Although both groups of animals were capable of swimming, TgIE96 mice failed to learn the water maze task during the allowed time. The startle response to a severe tone was similar in both control and TgIE96 mice, but the latter were unable to produce a significant prepulse inhibition. TgIE96 mice also presented evident deficits for the proper accomplishment of a passive avoidance test. These results suggest that the cerebellum is not indispensable for the performance of classical eyeblink conditioning and for object recognition tasks, but seems to be necessary for the proper performance of water maze, prepulse inhibition, and passive avoidance tests

    Moderate Traumatic Brain Injury Causes Acute Dendritic and Synaptic Degeneration in the Hippocampal Dentate Gyrus

    Get PDF
    Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI). Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI) induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI

    Why Pleiotropic Interventions are Needed for Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) involves a complex pathological cascade thought to be initially triggered by the accumulation of β-amyloid (Aβ) peptide aggregates or aberrant amyloid precursor protein (APP) processing. Much is known of the factors initiating the disease process decades prior to the onset of cognitive deficits, but an unclear understanding of events immediately preceding and precipitating cognitive decline is a major factor limiting the rapid development of adequate prevention and treatment strategies. Multiple pathways are known to contribute to cognitive deficits by disruption of neuronal signal transduction pathways involved in memory. These pathways are altered by aberrant signaling, inflammation, oxidative damage, tau pathology, neuron loss, and synapse loss. We need to develop stage-specific interventions that not only block causal events in pathogenesis (aberrant tau phosphorylation, Aβ production and accumulation, and oxidative damage), but also address damage from these pathways that will not be reversed by targeting prodromal pathways. This approach would not only focus on blocking early events in pathogenesis, but also adequately correct for loss of synapses, substrates for neuroprotective pathways (e.g., docosahexaenoic acid), defects in energy metabolism, and adverse consequences of inappropriate compensatory responses (aberrant sprouting). Monotherapy targeting early single steps in this complicated cascade may explain disappointments in trials with agents inhibiting production, clearance, or aggregation of the initiating Aβ peptide or its aggregates. Both plaque and tangle pathogenesis have already reached AD levels in the more vulnerable brain regions during the “prodromal” period prior to conversion to “mild cognitive impairment (MCI).” Furthermore, many of the pathological events are no longer proceeding in series, but are going on in parallel. By the MCI stage, we stand a greater chance of success by considering pleiotropic drugs or cocktails that can independently limit the parallel steps of the AD cascade at all stages, but that do not completely inhibit the constitutive normal functions of these pathways. Based on this hypothesis, efforts in our laboratories have focused on the pleiotropic activities of omega-3 fatty acids and the anti-inflammatory, antioxidant, and anti-amyloid activity of curcumin in multiple models that cover many steps of the AD pathogenic cascade (Cole and Frautschy, Alzheimers Dement 2:284–286, 2006)

    Soluble forms of tau are toxic in Alzheimer's disease

    Get PDF
    Accumulation of neurofibrillary tangles (NFT), intracellular inclusions of fibrillar forms of tau, is a hallmark of Alzheimer Disease. NFT have been considered causative of neuronal death, however, recent evidence challenges this idea. Other species of tau, such as soluble misfolded, hyperphosphorylated, and mislocalized forms, are now being implicated as toxic. Here we review the data supporting soluble tau as toxic to neurons and synapses in the brain and the implications of these data for development of therapeutic strategies for Alzheimer’s disease and other tauopathies
    corecore