13 research outputs found

    Fibronectin Extra Domains tune cellular responses and confer topographically distinct features to fibril networks

    Get PDF
    International audienceCellular fibronectin (FN; also known as FN1) variants harboring one or two alternatively spliced so-called extra domains (EDB and EDA) play a central bioregulatory role during development, repair processes and fibrosis. Yet, how the extra domains impact fibrillar assembly and function of the molecule remains unclear. Leveraging a unique biological toolset and image analysis pipeline for direct comparison of the variants, we demonstrate that the presence of one or both extra domains impacts FN assembly, function and physical properties of the matrix. When presented to FN-null fibroblasts, extra domain-containing variants differentially regulate pH homeostasis, survival, and TGF- β by tuning the magnitude of cellular responses, rather than triggering independent molecular switches. Numerical analyses of fiber topologies highlight significant differences in variant-specific structural features and provide a first step for the development of a generative model of FN networks to unravel assembly mechanisms and investigate the physical and functional versatility of extracellular matrix landscapes

    A mechanism for the activation of the Na/H exchanger NHE-1 by cytoplasmic acidification and mitogens

    No full text
    Eukaryotic cells constantly have to fight against internal acidification. In mammals, this task is mainly performed by the ubiquitously expressed electroneutral Na(+)/H(+) exchanger NHE-1, which activates in a cooperative manner when cells become acidic. Despite its biological importance, the mechanism of this activation is still poorly understood, the most commonly accepted hypothesis being the existence of a proton-sensor site on the internal face of the transporter. This work uncovers mutations that lead to a nonallosteric form of the exchanger and demonstrates that NHE-1 activation is best described by a Monod–Wyman–Changeux concerted mechanism for a dimeric transporter. During intracellular acidification, a low-affinity form of NHE-1 is converted into a form possessing a higher affinity for intracellular protons, with no requirement for an additional proton-sensor site on the protein. This new mechanism also explains the activation of the exchanger by growth signals, which shift the equilibrium towards the high-affinity form

    Protective action of n-3 fatty acids on benzo[a]pyrene-induced apoptosis through the plasma membrane remodeling-dependent NHE1 pathway

    Get PDF
    International audiencePlasma membrane is an early target of polycyclic aromatic hydrocarbons (PAH). We previously showed that the PAH prototype, benzo[a]pyrene (B[a]P), triggers apoptosis via DNA damage-induced p53 activation (genotoxic pathway) and via remodeling of the membrane cholesterol-rich microdomains called lipid rafts, leading to changes in pH homeostasis (non-genotoxic pathway). As omega-3 (n-3) fatty acids can affect membrane composition and function or hamper in vivo PAH genotoxicity, we hypothesized that addition of physiologically relevant levels of polyunsaturated n-3 fatty acids (PUFAs) might interfere with B[a]P-induced toxicity. The effects of two major PUFAs, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), were tested on B[a]P cytotoxicity in the liver epithelial cell line F258. Both PUFAs reduced B[a]P-induced apoptosis. Surprisingly, pre-treatment with DHA increased the formation of reactive B[a]P metabolites, resulting in higher levels of B[a]P-DNA adducts. EPA had no apparent effect on B[a]P metabolism or related DNA damage. EPA and DHA prevented B[a]P-induced apoptotic alkalinization by affecting Na(+)/H(+) exchanger 1 activity. Thus, the inhibitory effects of omega-3 fatty acids on B[a]P-induced apoptosis involve a non-genotoxic pathway associated with plasma membrane remodeling. Our results suggest that dietary omega-3 fatty acids may have marked effects on the biological consequences of PAH exposure

    NaV1.5 Na+ channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia

    No full text
    International audienceThe degradation of the extracellular matrix by cancer cells represents an essential step in metastatic progression and this is performed by cancer cell structures called invadopodia. Na V 1.5 (also known as SCN5A) Na + channels are overexpressed in breast cancer tumours and are associated with metastatic occurrence. It has been previously shown that Na V 1.5 activity enhances breast cancer cell invasiveness through perimembrane acidification and subsequent degradation of the extracellular matrix by cysteine cathepsins. Here, we show that Na V 1.5 colocalises with Na + /H + exchanger type 1 (NHE-1) and caveolin-1 at the sites of matrix remodelling in invadopodia of MDA-MB-231 breast cancer cells. NHE-1, Na V 1.5 and caveolin-1 co-immunoprecipitated, which indicates a close association between these proteins. We found that the expression of Na V 1.5 was responsible for the allosteric modulation of NHE-1, rendering it more active at the intracellular pH range of 6.4-7; thus, it potentially extrudes more protons into the extracellular space. Furthermore, Na V 1.5 expression increased Src kinase activity and the phosphorylation (Y421) of the actin-nucleation-promoting factor cortactin, modified F-actin polymerisation and promoted the acquisition of an invasive morphology in these cells. Taken together, our study suggests that Na V 1.5 is a central regulator of invadopodia formation and activity in breast cancer cells

    Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration

    No full text
    ClC-7 is a chloride channel of late endosomes and lysosomes. In osteoclasts, it may cooperate with H(+)-ATPases in acidifying the resorption lacuna. In mice and man, loss of ClC-7 or the H(+)-ATPase a3 subunit causes osteopetrosis, a disease characterized by defective bone resorption. We show that ClC-7 knockout mice additionally display neurodegeneration and severe lysosomal storage disease despite unchanged lysosomal pH in cultured neurons. Rescuing their bone phenotype by transgenic expression of ClC-7 in osteoclasts moderately increased their lifespan and revealed a further progression of the central nervous system pathology. Histological analysis demonstrated an accumulation of electron-dense material in neurons, autofluorescent structures, microglial activation and astrogliosis. Like in human neuronal ceroid lipofuscinosis, there was a strong accumulation of subunit c of the mitochondrial ATP synthase and increased amounts of lysosomal enzymes. Such alterations were minor or absent in ClC-3 knockout mice, despite a massive neurodegeneration. Osteopetrotic oc/oc mice, lacking a functional H(+)-ATPase a3 subunit, showed no comparable retinal or neuronal degeneration. There are important medical implications as defects in the H(+)-ATPase and ClC-7 can underlie human osteopetrosis
    corecore