42 research outputs found

    Chlamydomonas reinhardtii, an Algal Model in the Nitrogen Cycle

    Get PDF
    Nitrogen (N) is an essential constituent of all living organisms and the main limiting macronutrient. Even when dinitrogen gas is the most abundant form of N, it can only be used by fixing bacteria but is inaccessible to most organisms, algae among them. Algae preferentially use ammonium (NH4+) and nitrate (NO3−) for growth, and the reactions for their conversion into amino acids (N assimilation) constitute an important part of the nitrogen cycle by primary producers. Recently, it was claimed that algae are also involved in denitrification, because of the production of nitric oxide (NO), a signal molecule, which is also a substrate of NO reductases to produce nitrous oxide (N2O), a potent greenhouse gas. This review is focused on the microalga Chlamydomonas reinhardtii as an algal model and its participation in different reactions of the N cycle. Emphasis will be paid to new actors, such as putative genes involved in NO and N2O production and their occurrence in other algae genomes. Furthermore, algae/bacteria mutualism will be considered in terms of expanding the N cycle to ammonification and N fixation, which are based on the exchange of carbon and nitrogen between the two organisms

    Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, <it>Riftia pachyptila</it>, a widely distributed constituent of vents along the East Pacific Rise and Galápagos Rift.</p> <p>Results</p> <p>Genetic differentiation (<it>F</it><sub><it>ST</it></sub>) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically.</p> <p>Conclusions</p> <p>Compared to other vent species, DNA sequence diversity is extremely low in <it>R. pachyptila</it>. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events.</p

    Patterns of deep-sea genetic connectivity in the New Zealand region : implications for management of benthic ecosystems

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e49474, doi:10.1371/journal.pone.0049474.Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand’s EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region.This work was funded in part by a Fulbright Fellowship administered by Fulbright New Zealand and the U.S. Department of State, awarded in 2011 to EKB. Funding and support for research expedition was provided by Land Information New Zealand, New Zealand Ministry of Fisheries, NIWA, Census of Marine Life on Seamounts (CenSeam), and the Foundation for Research, Science and Technology. Other research funding was provided by the New Zealand Ministry of Science and Innovation project “Impacts of resource use on vulnerable deep-sea communities” (FRST contract CO1X0906), the National Science Foundation (OCE-0647612), and the Deep Ocean Exploration Institute (Fellowship support to TMS)

    Panmixia in a fragmented and unstable environment: the hydrothermal shrimp Rimicaris exoculata disperses extensively along the Mid-Atlantic ridge

    Get PDF
    Dispersal plays a fundamental role in the evolution and persistence of species, and especially for species inhabiting extreme, ephemeral and highly fragmented habitats as hydrothermal vents. The Mid-Atlantic Ridge endemic shrimp species Rimicaris exoculata was studied using microsatellite markers to infer connectivity along the 7100-Km range encompassing the sampled sites. Astonishingly, no genetic differentiation was found between individuals from the different geographic origins, supporting a scenario of widespread large-scale dispersal despite the habitat distance and fragmentation. We hypothesize that delayed metamorphosis associated to temperature differences or even active directed migration dependent on physical and/or chemical stimuli could explain these results and warrant further studies on adaptation and dispersal mechanisms

    Ecology and biogeography of megafauna and macrofauna at the first known deep-sea hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge

    Get PDF
    0000-0002-9489-074X© The Author(s) 2016. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The attached file is the published version of the article

    Greedy algae that are great for our environment

    No full text
    Vulgarization article about a Marsden project (Marsden Fund MAU1711: focusing on polyphosphate synthesis in microalgae) published on the royal society webpage

    Nitrous Oxide (N<sub>2</sub>O) production in axenic <i>Chlorella vulgaris</i> microalgae cultures: evidence, putative pathways, and potential environmental impacts

    No full text
    Using antibiotic assays and genomic analysis, this study demonstrates nitrous oxide (N<sub>2</sub>O) is generated from axenic <i>Chlorella vulgaris</i> cultures. In batch assays, this production is magnified under conditions favouring intracellular nitrite accumulation, but repressed when nitrate reductase (NR) activity is inhibited. These observations suggest N<sub>2</sub>O formation in <i>C. vulgaris</i> might proceed via NR-mediated nitrite reduction into nitric oxide (NO) acting as N<sub>2</sub>O precursor via a pathway similar to N<sub>2</sub>O formation in bacterial denitrifiers, although NO reduction to N<sub>2</sub>O under oxia remains unproven in plant cells. Alternatively, NR may reduce nitrite to nitroxyl (HNO), the latter being known to dimerize to N<sub>2</sub>O under oxia. Regardless of the precursor considered, an NR-mediated nitrite reduction pathway provides a unifying explanation for correlations reported between N<sub>2</sub>O emissions from algae-based ecosystems and NR activity, nitrate concentration, nitrite concentration, and photosynthesis repression. Moreover, these results indicate microalgae-mediated N<sub>2</sub>O formation might significantly contribute to N<sub>2</sub>O emissions in algae-based ecosystems (e.g. 1.38–10.1 kg N<sub>2</sub>O-N ha<sup>−1</sup> yr<sup>−1</sup> in a 0.25 m deep raceway pond operated under Mediterranean climatic conditions). These findings have profound implications for the life cycle analysis of algae biotechnologies and our understanding of the global biogeochemical nitrogen cycle

    Care in the community Mobilising voluntary support

    No full text
    SIGLEAvailable from British Library Lending Division - LD:84/28689(Care) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore