626 research outputs found

    Turing patterns in multiplex networks

    Get PDF
    The theory of patterns formation for a reaction-diffusion system defined on a multiplex is developed by means of a perturbative approach. The intra-layer diffusion constants act as small parameter in the expansion and the unperturbed state coincides with the limiting setting where the multiplex layers are decoupled. The interaction between adjacent layers can seed the instability of an homogeneous fixed point, yielding self-organized patterns which are instead impeded in the limit of decoupled layers. Patterns on individual layers can also fade away due to cross-talking between layers. Analytical results are compared to direct simulations

    Pattern formation for reactive species undergoing anisotropic diffusion

    Get PDF
    Turing instabilities for a two species reaction-diffusion systems is studied under anisotropic diffusion. More specifically, the diffusion constants which characterize the ability of the species to relocate in space are direction sensitive. Under this working hypothesis, the conditions for the onset of the instability are mathematically derived and numerically validated. Patterns which closely resemble those obtained in the classical context of isotropic diffusion, develop when the usual Turing condition is violated, along one of the two accessible directions of migration. Remarkably, the instability can also set in when the activator diffuses faster than the inhibitor, along the direction for which the usual Turing conditions are not matched

    Almost sure existence of global weak solutions for super-critical Navier-Stokes equations

    Full text link
    In this paper we show that after suitable data randomization there exists a large set of super-critical periodic initial data, in H−α(Td)H^{-\alpha}({\mathbb T}^d) for some α(d)>0\alpha(d) > 0, for both 2d and 3d Navier-Stokes equations for which global energy bounds are proved. As a consequence, we obtain almost sure super-critical global weak solutions. We also show that in 2d these global weak solutions are unique.Comment: 22 pages, a revised argument in Section 5, the d=3d=3 cas

    Structural and functional consequences of c-N-Ras constitutively associated with intact mitochondria

    Get PDF
    AbstractWe demonstrate that both c-N-Ras and c-K(B)-Ras are constitutively associated with purified mitochondria. c-K(B)-Ras is associated with the mitochondrial outer membrane, and c-N-Ras is associated with both the outer membrane and inner mitochondrial compartments. The mitochondrial morphology is abnormal in both c-N-Ras negative and K-Ras negative cells. Normal mitochondrial morphology was restored by targeting N-Ras to both the inner and outer mitochondrial compartments, or by ectopically expressing c-K(B)-Ras. Impaired mitochondrial function can result in increased CHOP and NFκB activity, typical for a retrograde signaling response. Both are constitutively elevated in the N-Ras negative cells, but not in the K-Ras negative background, and are restored by c-N-Ras targeted exclusively to the inner mitochondrial compartment. Surprisingly, both targeting and the ability to functionally reduce retrograde transcriptional activity were found to be independent of c-N-Ras farnesylation. Overall, these data demonstrate for the first time a (1) farnesylation independent function for c-N-Ras and (2) that N-Ras within the inner mitochondrial compartment is an essential component of the retrograde signaling system between the mitochondria and nucleus

    Response of Photochemical Processes of Photosynthesis to Dinitrogen Fixation in Soybean

    Full text link

    Fine properties of self-similar solutions of the Navier-Stokes equations

    Full text link
    We study the solutions of the nonstationary incompressible Navier--Stokes equations in Rd\R^d, d≥2d\ge2, of self-similar form u(x,t)=1tU(xt)u(x,t)=\frac{1}{\sqrt t}U\bigl(\frac{x}{\sqrt t}\bigr), obtained from small and homogeneous initial data a(x)a(x). We construct an explicit asymptotic formula relating the self-similar profile U(x)U(x) of the velocity field to its corresponding initial datum a(x)a(x)

    Maize IgE binding proteins: each plant a different profile?

    Get PDF
    Background: Allergies are nearly always triggered by protein molecules and the majority of individuals with documented immunologic reactions to foods exhibit IgE hypersensitivity reactions. In this study we aimed to understand if natural differences, at proteomic level, between maize populations, may induce different IgE binding proteins profiles among maize-allergic individuals. We also intended to deepen our knowledge on maize IgE binding proteins. Results: In order to accomplish this goal we have used proteomic tools (SDS-PAGE and 2-D gel electrophoresis followed by western blot) and tested plasma IgE reactivity from four maize-allergic individuals against four different protein fractions (albumins, globulins, glutelins and prolamins) of three different maize cultivars. We have observed that maize cultivars have different proteomes that result in different IgE binding proteins profiles when tested against plasma from maize-allergic individuals. We could identify 19 different maize IgE binding proteins, 11 of which were unknown to date. Moreover, we found that most (89.5%) of the 19 identified potential maize allergens could be related to plant stress. Conclusions: These results lead us to conclude that, within each species, plant allergenic potential varies with genotype. Moreover, considering the stress-related IgE binding proteins identified, we hypothesise that the environment, particularly stress conditions, may alter IgE binding protein profiles of plant components
    • …
    corecore