52 research outputs found

    Environmental water quantity projections under market-driven and sustainability-driven future scenarios in the Narew basin, Poland

    Get PDF
    The aim of this article is to assess the impact of four scenarios combining possible changes in climate, atmospheric carbon dioxide, land use and water use by 2050, on the specific set of ecologically relevant flow regime indicators that define environmental flow requirements in a semi-natural river basin in Poland. This aim is presented through a modelling case study using the Soil and Water Assessment Tool (SWAT). Indicators show both positive and negative responses to future changes. Warm projections from the IPSL-CM4 global climate model combined with sustainable land- and water-use projections (SuE) produce the most negative changes, while warm and wet projections from the MIROC3.2 model combined with market-driven projections (EcF) gave the most positive changes. Climate change overshadows land- and water-use change in terms of the magnitude of projected flow alterations. The future of environmental water quantity is brighter under the market-driven rather than the sustainability-driven scenario, which shows that sustainability for terrestrial ecosystems (e.g. more forests and grasslands) can be at variance with sustainability for riverine and riparian ecosystems (requiring sufficient amount and proper timing of river flows)

    Regional projections of temperature and precipitation changes: Robustness and uncertainty aspects

    Get PDF
    This study presents the analysis of bias-corrected projections of changes in temperature and precipitation in the Vistula and Odra basins, covering approximately 90% of the Polish territory and small parts of neighbouring countries in Central and Eastern Europe. The ensemble of climate projections consists of nine regional climate model simulations from the EURO-CORDEX ensemble for two future periods 2021-2050 and 2071-2100, assuming two representative concentration pathways (RCPs) 4.5 and 8.5. The robustness is measured by the ensemble models' agreement on significant changes.We found a robust increase in the annual mean of daily minimum and maximum temperature, by 1-1.4 °C in the near future and by 1.9-3.8 °C in the far future (areal-means of the ensemble mean values). Higher increases are consistently associated with minimum temperature and the gradient of change goes from SWto NE regions. Seasonal projections of both temperature variables reflect lower robustness and suggest a higher future increase in winter temperatures than in other seasons, notably in the far future under RCP 8.5 (by more than 1 °C). However, changes in annual means of precipitation are uncertain and not robust in any of the analysed cases, even though the climate models agree well on the increase. This increase is intensified with rising global temperatures and varies from 5.5% in the near future under RCP 4.5 to 15.2%in the far future under RCP 8.5. Spatial variability is substantial, although quite variable between individual climate model simulations. Although seasonal means of precipitation are projected to considerably increase in all four combinations of RCPs and projection horizons for winter and spring, the high model spread reduces considerably the robustness, especially for the far future. In contrast, the ensemble members agree well that overall, the summer and autumn (with exception of the far future under RCP 8.5) precipitation will not undergo statistically significant changes

    Responses of fish and invertebrates to floods and droughts in Europe

    Get PDF
    Floods and droughts, two opposite natural components of streamflow regimes, are known to regulate population size and species diversity. Quantifiable measures of these disturbances and their subsequent ecological responses are needed to synthesize the knowledge on flow–ecosystem relationships. This study for the first time combines the systematic review approach used to collect evidence on the ecological responses to floods and droughts in Europe with the statistical methods used to quantify the extreme events severity. Out of 854 publications identified in literature search, 54 papers were retained after screening and eligibility checks, providing in total 82 case studies with unique extreme event—ecological response associations for which data were extracted. In this way, a database with metadata of case studies that can be explored with respect to various factors was constructed. This study pinpointed the research gaps where little evidence could be synthesized, for example, drought event studies and fish studies. It was demonstrated that in many cases the studied metrics (abundance, density, richness, and diversity) showed statistically significant decreases after or during the event occurrence. The responses in invertebrate density and richness were in general more negative than the corresponding responses in fish. Biota resistance to floods was found to be lower than the resistance to droughts. The severity of extreme events was not found to be an important factor influencing ecological metrics, although this analysis was often hampered by insufficient number of case studies. Conceivably, other factors could mask any existing relationships between disturbance severity and biotic response

    CHASE-PL Climate Projection dataset over Poland – bias adjustment of EURO-CORDEX simulations

    Get PDF
    The CHASE-PL (Climate change impact assessment for selected sectors in Poland) Climate Projections – Gridded Daily Precipitation and Temperature dataset 5 km (CPLCP-GDPT5) consists of projected daily minimum and maximum air temperatures and precipitation totals of nine EURO-CORDEX regional climate model outputs bias corrected and downscaled to a 5 km  ×  5 km grid. Simulations of one historical period (1971–2000) and two future horizons (2021–2050 and 2071–2100) assuming two representative concentration pathways (RCP4.5 and RCP8.5) were produced. We used the quantile mapping method and corrected any systematic seasonal bias in these simulations before assessing the changes in annual and seasonal means of precipitation and temperature over Poland. Projected changes estimated from the multi-model ensemble mean showed that annual means of temperature are expected to increase steadily by 1 °C until 2021–2050 and by 2 °C until 2071–2100 assuming the RCP4.5 emission scenario. Assuming the RCP8.5 emission scenario, this can reach up to almost 4 °C by 2071–2100. Similarly to temperature, projected changes in regional annual means of precipitation are expected to increase by 6 to 10 % and by 8 to 16 % for the two future horizons and RCPs, respectively. Similarly, individual model simulations also exhibited warmer and wetter conditions on an annual scale, showing an intensification of the magnitude of the change at the end of the 21st century. The same applied for projected changes in seasonal means of temperature showing a higher winter warming rate by up to 0.5 °C compared to the other seasons. However, projected changes in seasonal means of precipitation by the individual models largely differ and are sometimes inconsistent, exhibiting spatial variations which depend on the selected season, location, future horizon, and RCP. The overall range of the 90 % confidence interval predicted by the ensemble of multi-model simulations was found to likely vary between −7 % (projected for summer assuming the RCP4.5 emission scenario) and +40 % (projected for winter assuming the RCP8.5 emission scenario) by the end of the 21st century. Finally, this high-resolution bias-corrected product can serve as a basis for climate change impact and adaptation studies for many sectors over Poland. The CPLCP-GDPT5 dataset is publicly available at http://dx.doi.org/10.4121/uuid:e940ec1a-71a0-449e-bbe3-29217f2ba31d

    Cross‐scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    Get PDF
    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used
    corecore