10 research outputs found

    Mechanistic Models of Signaling Pathways Reveal the Drug Action Mechanisms behind Gender-Specific Gene Expression for Cancer Treatments

    Get PDF
    This article belongs to the Special Issue Targeting Signal Transduction Pathways and Non-coding RNAs as Potential Therapy in Cancer and Aging.Despite the existence of differences in gene expression across numerous genes between males and females having been known for a long time, these have been mostly ignored in many studies, including drug development and its therapeutic use. In fact, the consequences of such differences over the disease mechanisms or the drug action mechanisms are completely unknown. Here we applied mechanistic mathematical models of signaling activity to reveal the ultimate functional consequences that gender-specific gene expression activities have over cell functionality and fate. Moreover, we also used the mechanistic modeling framework to simulate the drug interventions and unravel how drug action mechanisms are affected by gender-specific differential gene expression. Interestingly, some cancers have many biological processes significantly affected by these gender-specific differences (e.g., bladder or head and neck carcinomas), while others (e.g., glioblastoma or rectum cancer) are almost insensitive to them. We found that many of these gender-specific differences affect cancer-specific pathways or in physiological signaling pathways, also involved in cancer origin and development. Finally, mechanistic models have the potential to be used for finding alternative therapeutic interventions on the pathways targeted by the drug, which lead to similar results compensating the downstream consequences of gender-specific differences in gene expression.This work is supported by grants SAF2017-88908-R from the Spanish Ministry of Economy and Competitiveness and “Plataforma de Recursos Biomoleculares y Bioinformáticos” PT17/0009/0006 from the ISCIII, both co-funded with European Regional Development Funds (ERDF) as well as H2020 Programme of the European Union grants Marie Curie Innovative Training Network "Machine Learning Frontiers in Precision Medicine" (MLFPM) (GA 813533) and “ELIXIR-EXCELERATE fast-track ELIXIR implementation and drive early user exploitation across the life sciences” (GA 676559)

    Methylation deregulation of miRNA promoters identifies miR124-2 as a survival biomarker in Breast Cancer in very young women

    Get PDF
    MiRNAs are part of the epigenetic machinery, and are also epigenetically modified by DNA methylation. MiRNAs regulate expression of different genes, so any alteration in their methylation status may affect their expression. We aimed to identify methylation differences in miRNA encoding genes in breast cancer affecting women under 35 years old (BCVY), in order to identify potential biomarkers in these patients. In Illumina Infinium MethylationEPIC BeadChip samples (metEPICVal), we analysed the methylation of 9,961 CpG site regulators of miRNA-encoding genes present in the array. We identified 193 differentially methylated CpG sites in BCVY (p-value < 0.05 and methylation differences ±0.1) that regulated 83 unique miRNA encoding genes. We validated 10 CpG sites using two independent datasets based on Infinium Human Methylation 450k array. We tested gene expression of miRNAs with differential methylation in BCVY in a meta-analysis using The Cancer Genome Atlas (TCGA), Clariom D and Affymetrix datasets. Five miRNAs (miR-9, miR-124-2, miR-184, miR-551b and miR-196a-1) were differently expressed (FDR p-value < 0.01). Finally, only miR-124-2 shows a significantly different gene expression by quantitative real-time PCR. MiR-124-hypomethylation presents significantly better survival rates for older patients as opposed to the worse prognosis observed in BCVY, identifying it as a potential specific survival biomarker in BCVY
    corecore