65 research outputs found

    KINEMATIC ANALYSIS OF THE SLIDING STOP IN WESTERN RIDING AT THE MALLORCA WESTERN REINING TROPHY 2006

    Get PDF
    The purpose of this study was to show the acceleration acting during the sliding stop. As data source we used a DVD of 10 finalists of the Mallorca Western Festivals 2006 (reining competition). These videos were analysed using the SIMI-Motion software. Additionally to the defined location on the horse and rider the reference points on the horse (saddle pad) and on the panel fence (advertising board) were digitised. With the help of the reference point the coordinates were determined and the acceleration was calculated. The maximum acceleration of the sliding stop in the running direction was mean=37.92 m/s² (SD=9.47). The vertical acceleration of the sliding stop at this time was mean=8.50 m/s² (SD=6.26).With an expected mass of horse and rider between 500 to 600 Kg, this acceleration will lead to a load between 11.6 KN and 37.6 KN. The conclusion is that the acting load during the sliding stop is comparable to load on the extremity during a gallop race. The question remains what are the effects of the sliding to the lower hind extremities of the horse and does it lead to injuries

    THE INFLUENCE OF THE RIDER ON THE TROTTING MOTION OF A HORSE

    Get PDF
    Introduction: The characteristics of trot, such as collection, impulsion, action of the hind quarter, the position of the head and the balance of the horse are described in the Rules of Dressage Events of the Federation Equestre International. Up to now, these characteristics were judged subjectively by dressage judges, but no objective measures have been developed to substantiate these judgments. The aim of our study was to establish measurable criteria that make possible the quantification of dressage characteristics, by comparing the motion pattern of trotting horses ridden by two riders of different skill and being led on hand. Materials and Methods: Twenty horses aged 4 to 22 years at different training levels were measured being ridden at trot by a professional rider and a hobby rider, as well as being trotted on hand. The measurements were carried out from the right side, with six cameras (sample rate 120 Hz, resolution 240 x 833 points) tracing 20 reflecting spherical markers placed on the horse’s and rider’s right side. At least eight recordings of five seconds each were taken with the ExpertVision System of Motion Analysis Corporation with the horse trotting on a 12 m long pressed sand track in an indoor riding arena. At least eight motion cycles of each rider-horse combination and of the horses being trotted on hand were analyzed. The 3-dimensional movement of the markers was calculated, and the stridelength, speed, and vertical movement of the fetlock joints were compared. The data were normalized to the trotting speed. The normal distribution of each group was tested using the Kolmogorov- Smirnov test, and the Student test of paired samples was used to check the differences between the means of the groups of the above described parameters. Results and Discussion: With the hobby rider the horses had the significantly lowest trotting speeds, the smallest stride length, the highest head position, the smallest vertical movement of the fetlock joint and the longest duration of stancephase when compared to when the horse is ridden by the professional rider and trotted on hand. Between the horse’s motion when ridden by the professional rider and trotted on hand no significant differences could be detected in the trotting speed and the duration of stance-phase, whereas significant differences were established for head position and stride length. The vertical movement of the fetlock joint did not differ significantly when ridden by the hobby rider and trotted on the hand, but both did differ significantly from the vertical movement of the fetlock joint when ridden by the professional rider. The results of this study show that some terms used by the Federation Equestre International can be translated into measurable quantities, and thus a more objective judgment of dressage may evolve

    MOTION PATTERN CONSISTENCY OF THE RIDER-HORSE SYSTEM

    Get PDF
    INTRODUCTION: Dressage riding is difficult to judge, because the aesthetics of the performance cannot be measured simply. The aim of this study was to show a method of visualizing and quantifying the harmony of the motion of a rider and a horse by evaluating their coordination. Rider and horse have a natural frequency when trotting; they can therefore be considered a system of coupled biological oscillators. The characteristics of such a system are determined by the innate and learned motion patterns, anatomy and physical condition of both participants. Any periodic motion can be described as a limit-cycleattractor in the phase space. The characteristics of an oscillator or a system of oscillators can be depicted as a phase plane diagram (PPD), which is a suitable method to visualize the characteristics (e.g., longterm behavior and limit-cycle) of a complex system, such as the ridden horse. METHODS: Twenty horses aged 4 to 22 years on different training levels were measured being ridden at trot by a professional rider and a hobby rider. The measurements were carried out from the right side, with six cameras (sample rate 120 Hz, resolution 240 x 833 points) tracing 20 reflecting spherical markers placed on the horse’s and rider’s right side. At least eight recordings of five seconds each were taken with the ExpertVision System of the Motion Analysis Corporation with the horse trotting on a 12 m long pressed sand track in an indoor riding arena. At least eight motion cycles of each rider-horse combination were analyzed. The 3-dimensional movements of the markers were used to deduce the angle between the linkages of rider’s head to rider’s back and of rider’s back to the horse’s head. Then the data were normalized to 100% of the length of the motion cycle. Angle velocity and angle acceleration were computed and from all three data-sets, scaled to 100% of the professional rider’s angle, angle velocity and angle acceleration; the trajectories in the phase-space were plotted and the lengths of the resulting vectors (LV) in the phase-space were computed. The mean and average deviation (variation of LV) of LV of every horse and rider were determined and grouped for each rider. The normal distribution of each group was tested with the Kolmogorov-Smirnov test. The Student test of paired samples and one-way analysis of variance were used to check the differences between the mean of the groups of LV and average deviation. RESULTS AND DISCUSSION: There was no significant difference in the mean of LV between the 2 riders, but there was a significant () difference in the average deviation of the LV, showing that the motion of the horse-professional rider system is more consistent than of the horse-hobby rider system. With this method the rhythm and the natural balance of the rider-horse system can be evaluated, and this information might prove a useful feedback for the education of riders

    An In Vitro Barrier Model of the Human Submandibular Salivary Gland Epithelium Based on a Single Cell Clone of Cell Line HTB-41: Establishment and Application for Biomarker Transport Studies

    Get PDF
    The blood–saliva barrier (BSB) consists of the sum of the epithelial cell layers of the oral mucosa and salivary glands. In vitro models of the BSB are inevitable to investigate and understand the transport of salivary biomarkers from blood to saliva. Up to now, standardized, cell line-based models of the epithelium of the submandibular salivary gland are still missing for this purpose. Therefore, we established epithelial barrier models of the submandibular gland derived from human cell line HTB-41 (A-253). Single clone isolation resulted in five different clones (B2, B4, B9, D3, and F11). Clones were compared to the parental cell line HTB-41 using measurements of the transepithelial electrical resistance (TEER), paracellular marker permeability assays and analysis of marker expression for acinar, ductal, and myoepithelial cells. Two clones (B9, D3) were characterized to be of acinar origin, one clone (F11) to be of myoepithelial origin and one isolation (B4) derived from two cells, to be presumably a mixture of acinar and ductal origin. Clone B2, presumably of ductal origin, showed a significantly higher paracellular barrier compared to other clones and parental HTB-41. The distinct molecular identity of clone B2 was confirmed by immunofluorescent staining, qPCR, and flow cytometry. Experiments with ferritin, a biomarker for iron storage, demonstrated the applicability of the selected model based on clone B2 for transport studies. In conclusion, five different clones originating from the submandibular gland cell line HTB-41 were successfully characterized and established as epithelial barrier models. Studies with the model based on the tightest clone B2 confirmed its suitability for transport studies in biomarker research

    Are we ready to detect nematode diversity by next generation sequencing?

    Get PDF
    In a Technical Advance article, Porazinska et al. (2009, Molecular Ecology Resources, 9, 1439-1450) assessed next generation sequencing (NGS ) as a method for metagenomic analysis of nematode diversity. We agree that NGS has great potential here. However, it is not an easy path to the successful implementation of NGS for environmental DNA analysis of nematodes. Here, we describe the method's limitations and discuss prospective research questions. For instance, only a few direct extraction kits are suitable for nematode DNA extraction from bulk samples without adaptation. They enable the analysis of extracellular nematode DNA . The most crucial and unresolved issue remains the limited availability of suitable primers.(VLID)3146417Version of recor

    Directed transport of CRP across in vitro models of the blood-saliva barrier strengthens the feasibility of salivary CRP as biomarker for neonatal sepsis

    Get PDF
    C-reactive protein (CRP) is a commonly used serum biomarker for detecting sepsis in neonates. After the onset of sepsis, serial measurements are necessary to monitor disease progression; therefore, a non-invasive detection method is beneficial for neonatal well-being. While some studies have shown a correlation between serum and salivary CRP levels in septic neonates, the causal link behind this correlation remains unclear. To investigate this relationship, CRP was examined in serum and saliva samples from 18 septic neonates and compared with saliva samples from 22 healthy neonates. While the measured blood and saliva concentrations of the septic neonates varied individually, a correlation of CRP levels between serum and saliva samples was observed over time. To clarify the presence of active transport of CRP across the blood–salivary barrier (BSB), transport studies were performed with CRP using in vitro models of oral mucosa and submandibular salivary gland epithelium. The results showed enhanced transport toward saliva in both models, supporting the clinical relevance for salivary CRP as a biomarker. Furthermore, CRP regulated the expression of the receptor for advanced glycation end products (RAGE) and the addition of soluble RAGE during the transport studies indicated a RAGE-dependent transport process for CRP from blood to saliva

    Movement asymmetries in horses presented for prepurchase or lameness examination

    Get PDF
    Background The increasing popularity of objective gait analysis makes application in prepurchase examinations (PPE) a logical next step. Therefore, there is a need to have more understanding of asymmetry during a PPE in horses described on clinical evaluation as subtly lame.Objectives The objective of this study is to objectively compare asymmetry in horses raising minor vet concerns in a PPE and in horses raising major vet concerns with that found in horses presented with subtle single-limb lameness, and to investigate the effect of age/discipline on the clinicians' interpretation of asymmetry on the classification of minor vet concerns in a PPE.Study Design Clinical case-series.Methods Horses presented for PPE (n = 98) or subjectively evaluated as single limb low-grade (1-2/5) lame (n = 24, 13 forelimb lame, 11 hindlimb lame), from the patient population of a single clinic, were enrolled in the study provided that owners were willing to participate. Horses undergoing PPE were assigned a classification of having minor vet concerns (n = 84) or major vet concerns (n = 14) based on findings during the dynamic-orthopaedic part of the PPE. Lame horses were only included if pain-related lameness was confirmed by an objective improvement after diagnostic analgesia exceeding daily variation determined for equine symmetry parameters using optical motion capture. Clinical evaluation was performed by six different clinicians, each with >= 8 years of equine orthopaedic experience. Vertical movement symmetry was measured using optical motion capture, simultaneously with the orthopaedic examination. Data were analysed using previously described parameters and mixed model analysis and least squares means were used to calculate differences between groups.Results There was no effect of age or discipline on the levels of asymmetry within PPE horses raising minor vet concerns. MinDiff and RUD of the head discriminated between forelimb lame and PPE horses raising minor vet concerns; MinDiff, MaxDiff, RUD of the Pelvis, HHDswing and HHDstance did so for hindlimb lameness. Two lameness patterns differentiated both forelimb and hindlimb lame from PPE horses with minor vet concerns: RUD Poll + MinDiff Withers - RUD Pelvis and RUD Pelvis + RUD Poll - MinDiff Withers. Correcting for vertical range of motion enabled differentiation of PPE horses with minor vet concerns from PPE horses with major vet concerns.Main Limitations Objective data only based on trot on soft surface, limited number of PPE horses with major vet concerns.Conclusions Combinations of kinematic parameters discriminate between PPE horses with minor vet concerns and subtly lame horses, though overlap exists

    Methyl-binding domain protein-based DNA isolation from human blood serum combines DNA analyses and serum-autoantibody testing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circulating cell free DNA in serum as well as serum-autoantibodies and the serum proteome have great potential to contribute to early cancer diagnostics via non invasive blood tests. However, most DNA preparation protocols destroy the protein fraction and therefore do not allow subsequent protein analyses. In this study a novel approach based on methyl binding domain protein (MBD) is described to overcome the technical difficulties of combining DNA and protein analysis out of one single serum sample.</p> <p>Methods</p> <p>Serum or plasma samples from 98 control individuals and 54 breast cancer patients were evaluated upon silica membrane- or MBD affinity-based DNA isolation via qPCR targeting potential DNA methylation markers as well as by protein-microarrays for tumor-autoantibody testing.</p> <p>Results</p> <p>In control individuals, an average DNA level of 22.8 ± 25.7 ng/ml was detected applying the silica membrane based protocol and 8.5 ± 7.5 ng/ml using the MBD-approach, both values strongly dependent on the serum sample preparation methods used. In contrast to malignant and benign tumor serum samples, cell free DNA concentrations were significantly elevated in sera of metastasizing breast cancer patients. Technical evaluation revealed that serum upon MBD-based DNA isolation is suitable for protein-array analyses when data are consistent to untreated serum samples.</p> <p>Conclusion</p> <p>MBD affinity purification allows DNA isolations under native conditions retaining the protein function, thus for example enabling combined analyses of DNA methylation and autoantigene-profiles from the same serum sample and thereby improving minimal invasive diagnostics.</p

    Novel Methods for Surface EMG Analysis and Exploration Based on Multi-Modal Gaussian Mixture Models

    Get PDF
    <div><p>This paper introduces a new method for data analysis of animal muscle activation during locomotion. It is based on fitting Gaussian mixture models (GMMs) to surface EMG data (sEMG). This approach enables researchers/users to isolate parts of the overall muscle activation within locomotion EMG data. Furthermore, it provides new opportunities for analysis and exploration of sEMG data by using the resulting Gaussian modes as atomic building blocks for a hierarchical clustering. In our experiments, composite peak models representing the general activation pattern per sensor location (one sensor on the long back muscle, three sensors on the gluteus muscle on each body side) were identified per individual for all 14 horses during walk and trot in the present study. Hereby we show the applicability of the method to identify composite peak models, which describe activation of different muscles throughout cycles of locomotion.</p></div
    corecore