782 research outputs found

    Rare plant conservation planning workshop results: Middle Park

    Get PDF
    This document identifies conservation strategies for Penland penstemon and Kremmling milkvetch, based on an assessment of the plants' viability and threats by participants of a June 2008 workshop. The primary audience is intended to be the workshop participants and other stakeholders interested in helping to implement the strategies.Sponsored by the Colorado Rare Plant Conservation Initiative, June 26, 2008

    Rare plant conservation planning workshop results: Pagosa Springs

    Get PDF
    This document identifies conservation strategies for Pagosa skyrocket, based on an assessment of the plant's viability and threats by participants of a June 2008 workshop. The primary audience is intended to be the workshop participants and other stakeholders interested in helping to implement the strategies.Sponsored by the Colorado Rare Plant Conservation Initiative, June 12, 2008

    An advanced 3D multi-body system model for the human lumbar spine

    Get PDF
    Series : Mechanisms and machine science, ISSN 2211-0984, vol. 24A novel 3D multi-body system model of the human lumbar spine is presented, allowing the dynamic study of the all set but also to access mechanical demands, characteristics and performance under work of the individual intervertebral discs. An advanced FEM analysis was used for the most precise characterization of the disc 6DOF mechanical behavior, in order to build up a tool capable of predicting and assist in the design of disc recovery strategies – namely in the development of replace-ment materials for the degenerated disc nucleus – as well as in the analysis of variations in the me-chanical properties (disorders) at disc level or kinematic structure (e.g. interbody fusion, pedicle fixa-tion, etc.), and its influence in the overall spine dynamics and at motion segments individual level. Preliminary results of the model, at different levels of its development, are presented

    Geometry of the Intervertebral Volume and Vertebral Endplates of the Human Spine

    Get PDF
    Replacement of a degenerated vertebral disc with an artificial intervertebral disc (AID) is currently possible, but poses problems, mainly in the force distribution through the vertebral column. Data on the intervertebral disc space geometry will provide a better fit of the prosthesis to the vertebrae, but current literature on vertebral disc geometry is very scarce or not suitable. In this study, existing CT-scans of 77 patients were analyzed to measure the intervertebral disc and vertebral endplate geometry of the lumbar spine. Ten adjacent points on both sides of the vertebrae (S1-superior to T12-inferior) and sagittal and transverse diameters were measured to describe the shape of the caudal and cranial vertebral planes of the vertebrae. It was found that the largest endplate depth is located in the middle or posterior regions of the vertebra, that there is a linear relationship between all inferior endplate depths and the endplate location (p < 0.0001) within the spinal column, and that the superior endplate depth increases with age by about 0.01 mm per year (p < 0.02). The wedge angle increases from T12-L1 to L5-S1. The results allow for improvement of the fit of intervertebral disc-prostheses to the vertebrae and optimized force transmission through the vertebral column

    Natural heritage inventory of the town of Vail: final report

    Get PDF
    Prepared for: the town of Vail.March 29, 1994

    Inter-rater reliability of three standardized functional tests in patients with low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Of all patients with low back pain, 85% are diagnosed as "non-specific lumbar pain". Lumbar instability has been described as one specific diagnosis which several authors have described as delayed muscular responses, impaired postural control as well as impaired muscular coordination among these patients. This has mostly been measured and evaluated in a laboratory setting. There are few standardized and evaluated functional tests, examining functional muscular coordination which are also applicable in the non-laboratory setting. In ordinary clinical work, tests of functional muscular coordination should be easy to apply. The aim of this present study was to therefore standardize and examine the inter-rater reliability of three functional tests of muscular functional coordination of the lumbar spine in patients with low back pain.</p> <p>Methods</p> <p>Nineteen consecutive individuals, ten men and nine women were included. (Mean age 42 years, SD ± 12 yrs). Two independent examiners assessed three tests: "single limb stance", "sitting on a Bobath ball with one leg lifted" and "unilateral pelvic lift" on the same occasion. The standardization procedure took altered positions of the spine or pelvis and compensatory movements of the free extremities into account. The inter-rater reliability was analyzed by Cohen's kappa coefficient (κ) and by percentage agreement.</p> <p>Results</p> <p>The inter-rater reliability for the right and the left leg respectively was: for the single limb stance very good (κ: 0.88–1.0), for sitting on a Bobath ball good (κ: 0.79) and very good (κ: 0.88) and for the unilateral pelvic lift: good (κ: 0.61) and moderate (κ: 0.47).</p> <p>Conclusion</p> <p>The present study showed good to very good inter-rater reliability for two standardized tests, that is, the single-limb stance and sitting on a Bobath-ball with one leg lifted. Inter-rater reliability for the unilateral pelvic lift test was moderate to good. Validation of the tests in their ability to evaluate lumbar stability is required.</p

    Minimizing the source of nociception and its concurrent effect on sensory hypersensitivity: An exploratory study in chronic whiplash patients

    Get PDF
    Abstract. Background. The cervical zygapophyseal joints may be a primary source of pain in up to 60% of individuals with chronic whiplash associated disorders (WAD) and may be a contributing factor for peripheral and centrally mediated pain (sensory hypersensitivity). Sensory hypersensitivity has been associated with a poor prognosis. The purpose of the study was to determine if there is a change in measures indicative of sensory hypersensitivity in patients with chronic WAD grade II following a medial branch block (MBB) procedure in the cervical spine. Methods. Measures of sensory hypersensitivity were taken via quantitative sensory testing (QST) consisting of pressure pain thresholds (PPT's) and cold pain thresholds (CPT's). In patients with chronic WAD (n = 18), the measures were taken at three sites bilaterally, pre- and post- MBB. Reduced pain thresholds at remote sites have been considered an indicator of central hypersensitivity. A healthy age and gender matched comparison group (n = 18) was measured at baseline. An independent t-test was applied to determine if there were any significant differences between the WAD and normative comparison groups at baseline with respect to cold pain and pressure pain thresholds. A dependent t-test was used to determine whether there were any significant differences between the pre and post intervention cold pain and pressure pain thresholds in the patients with chronic WAD. Results. At baseline, PPT's were decreased at all three sites in the WAD group (p < 0.001). Cold pain thresholds were increased in the cervical spine in the WAD group (p < 0.001). Post-MBB, the WAD group showed significant increases in PPT's at all sites (p < 0.05), and significant decreases in CPT's at the cervical spine (p < 0.001). Conclusions. The patients with chronic WAD showed evidence of widespread sensory hypersensitivity to mechanical and thermal stimuli. The WAD group revealed decreased sensory hypersensitivity following a decrease in their primary source of pain stemming from the cervical zygapophyseal joints

    Attainment rate as a surrogate indicator of the intervertebral neutral zone length in lateral bending: An in vitro proof of concept study

    Get PDF
    Background Lumbar segmental instability is often considered to be a cause of chronic low back pain. However, defining its measurement has been largely limited to laboratory studies. These have characterised segmental stability as the intrinsic resistance of spine specimens to initial bending moments by quantifying the dynamic neutral zone. However these measurements have been impossible to obtain in vivo without invasive procedures, preventing the assessment of intervertebral stability in patients. Quantitative fluoroscopy (QF), measures the initial velocity of the attainment of intervertebral rotational motion in patients, which may to some extent be representative of the dynamic neutral zone. This study sought to explore the possible relationship between the dynamic neutral zone and intervertebral rotational attainment rate as measured with (QF) in an in vitro preparation. The purpose was to find out if further work into this concept is worth pursuing. Method This study used passive recumbent QF in a multi-segmental porcine model. This assessed the intrinsic intervertebral responses to a minimal coronal plane bending moment as measured with a digital force guage. Bending moments about each intervertebral joint were calculated and correlated with the rate at which global motion was attained at each intervertebral segment in the first 10° of global motion where the intervertebral joint was rotating. Results Unlike previous studies of single segment specimens, a neutral zone was found to exist during lateral bending. The initial attainment rates for left and right lateral flexion were comparable to previously published in vivo values for healthy controls. Substantial and highly significant levels of correlation between initial attainment rate and neutral zone were found for left (Rho = 0.75, P = 0.0002) and combined left-right bending (Rho = 0.72, P = 0.0001) and moderate ones for right alone (Rho = 0.55, P = 0.0012). Conclusions This study found good correlation between the initial intervertebral attainment rate and the dynamic neutral zone, thereby opening the possibility to detect segmental instability from clinical studies. However the results must be treated with caution. Further studies with multiple specimens and adding sagittal plane motion are warranted
    corecore