110 research outputs found

    Genome-wide identification, annotation and characterization of novel thermostable cytochrome P450 monooxygenases from the thermophilic biomass-degrading fungi Thielavia terrestris and Myceliophthora thermophila

    Get PDF
    Published ArticleCytochrome P450 monooxygenases (P450s) are ubiquitous heme-thiolate proteins that have potential biotechnological application. Thermostable-P450s that can withstand hostile industrial conditions, such as high temperatures, extremes of pH and organic solvents, are needed for biotechnological usage. Here, for the first time, we report a large number of thermostable-P450s from two thermophilic biomass-degrading fungi, Myceliophthora thermophila and Thielavia terrestris. Genome-wide P450 analysis revealed the presence of 79 and 70 P450s (P450ome) in T. terrestris and M. thermophila. Authentic P450s containing both the P450 signature domains (EXXRand CXG) were classified as follows: T. terrestris (50 families and 56 subfamilies) and M. thermophila (49 families and 53 subfamilies). Bioinformatics analysis of P450omes suggested the presence of a large number of thermostable-P450s. Based on aliphatic index cut-off ([90), 14 and 11 P450s were determined to be thermostable in T. terrestris and M. thermophila. Among the thermostable P450s, six P450s from T. terrestris and three from M. thermophila had a melting temperature (Tm) of [65 C, suggesting their hyperthermal tolerance. Analysis of the instability index of two ascomycete P450omes revealed the presence of 12 and 19 in vitro stable P450s in T. terrestris and M. thermophila. Overall, six P450s from T. terrestris and four from M. thermophila showed both thermal tolerance and in vitro stability. Thermophilic ascomycetes P450s are of potential interest from a structural, mechanistic and biotechnological point of view, as five P450s showed higher thermal tolerance and five showed higher in vitro stability compared to the wellcharacterized thermostable-P450s CYP175A1 (bacteria) and CYP119 (archaea)

    Exploring the feasibility of engaging Traditional Birth Attendants in a prevention of Mother to Child HIV Transmission program in Lilongwe, Malawi

    Get PDF
    ObjectiveTo investigate the willingness of Traditional Birth Attendants (TBAs) to provide single dose antiretroviral prophylaxis to infants born to mothers with HIV and the feasibility of providing the TBAs with antiretroviral medication.Design2 focus groups with a total of 17 registered TBAs.SettingLilongwe, MalawiMethodsTBAs were recruited by local health workers and participated in focus groups assessing their attitudes towards participation in a PMTCT program.ResultsTBAs were willing to participate in this prevention of mother-to-child HIV transmission (PMTCT) program and helped identify barriers to their participation.ConclusionsGiven appropriate support and training, TBAs’ participation in PMTCT programs could be an additional way to deliver medication to mothers and neonates who might otherwise miss crucial doses of medication

    Wide-range Angle-sensitive Plasmonic Color Printing on Lossy-Resonator Substrates

    Full text link
    We demonstrate a sustainable, lithography-free process for generating non fading plasmonic colors with a prototype device that produces a wide range of vivid colors in red, green, and blue (RGB) ([0-1], [0-1], [0-1]) color space from violet (0.7, 0.72, 1) to blue (0.31, 0.80, 1) and from green (0.84, 1, 0.58) to orange (1, 0.58, 0.46). The proposed color-printing device architecture integrates a semi-transparent random metal film (RMF) with a metal back mirror to create a lossy asymmetric Fabry-P\'erot resonator. This device geometry allows for advanced control of the observed color through the five-degree multiplexing (RGB color space, angle, and polarization sensitivity). An extended color palette is then obtained through photomodification process and localized heating of the RMF layer under various femtosecond laser illumination conditions at the wavelengths of 400 nm and 800 nm. Colorful design samples with total areas up to 10 mm2 and 100 {\mu}m resolution are printed on 300-nm-thick films to demonstrate macroscopic high-resolution color generation. The proposed printing approach can be extended to other applications including laser marking, anti-counterfeiting and chromo-encryption

    Domain-swapped T cell receptors improve the safety of TCR gene therapy

    Get PDF
    T cells engineered to express a tumor-specific {alpha}{beta} T cell receptor (TCR) mediate anti-tumor immunity. However, mispairing of the therapeutic {alpha}{beta} chains with endogenous {alpha}{beta} chains reduces therapeutic TCR surface expression and generates self-reactive TCRs. We report a general strategy to prevent TCR mispairing: swapping constant domains between the {alpha} and {beta} chains of a therapeutic TCR. When paired, domain-swapped (ds)TCRs assemble with CD3, express on the cell surface, and mediate antigen-specific T cell responses. By contrast, dsTCR chains mispaired with endogenous chains cannot properly assemble with CD3 or signal, preventing autoimmunity. We validate this approach in cell-based assays and in a mouse model of TCR gene transfer-induced graft-versus-host disease. We also validate a related approach whereby replacement of {alpha}{beta} TCR domains with corresponding {gamma}{delta} TCR domains yields a functional TCR that does not mispair. This work enables the design of safer TCR gene therapies for cancer immunotherapy

    The role of lifestyle changes in the management of chronic liver disease

    Get PDF
    The prevalence of obesity worldwide has dramatically increased during the last three decades. With obesity comes a variety of adverse health outcomes which are grouped under the umbrella of metabolic syndrome. The liver in particular seems to be significantly impacted by fat deposition in the presence of obesity. In this article we discuss several liver conditions which are directly affected by overweight and obese status, including non-alcoholic fatty liver disease, chronic infection with hepatitis C virus and post-liver transplant status. The deleterious effects of obesity on liver disease and overall health can be significantly impacted by a culture that fosters sustained nutritional improvement and regular physical activity. Here we summarize the current evidence supporting non-pharmacological, lifestyle interventions that lead to weight reduction, improved physical activity and better nutrition as part of the management and treatment of these liver conditions

    A common polymorphism in the retinoic acid pathway modifies adrenocortical carcinoma age-dependent incidence

    Get PDF
    Background Genome-wide association studies (GWASs) have enriched the fields of genomics and drug development. Adrenocortical carcinoma (ACC) is a rare cancer with a bimodal age distribution and inadequate treatment options. Paediatric ACC is frequently associated with TP53 mutations, with particularly high incidence in Southern Brazil due to the TP53 p.R337H (R337H) germline mutation. The heterogeneous risk among carriers suggests other genetic modifiers could exist. Methods We analysed clinical, genotype and gene expression data derived from paediatric ACC, R337H carriers, and adult ACC patients. We restricted our analyses to single nucleotide polymorphisms (SNPs) previously identified in GWASs to associate with disease or human traits. Results A SNP, rs971074, in the alcohol dehydrogenase 7 gene significantly and reproducibly associated with allelic differences in ACC age-of-onset in both cohorts. Patients homozygous for the minor allele were diagnosed up to 16 years earlier. This SNP resides in a gene involved in the retinoic acid (RA) pathway and patients with differing levels of RA pathway gene expression in their tumours associate with differential ACC progression. Conclusions These results identify a novel genetic component to ACC development that resides in the retinoic acid pathway, thereby informing strategies to develop management, preventive and therapeutic treatments for ACC

    Conformational Plasticity of proNGF

    Get PDF
    Nerve Growth Factor is an essential protein that supports neuronal survival during development and influences neuronal function throughout adulthood, both in the central and peripheral nervous system. The unprocessed precursor of NGF, proNGF, seems to be endowed with biological functions distinct from those of the mature protein, such as chaperone-like activities and apoptotic and/or neurotrophic properties. We have previously suggested, based on Small Angle X-ray Scattering data, that recombinant murine proNGF has features typical of an intrinsically unfolded protein. Using complementary biophysical techniques, we show here new evidence that clarifies and widens this hypothesis through a detailed comparison of the structural properties of NGF and proNGF. Our data provide direct information about the dynamic properties of the pro-peptide and indicate that proNGF assumes in solution a compact globular conformation. The N-terminal pro-peptide extension influences the chemical environment of the mature protein and protects the protein from proteolytic digestion. Accordingly, we observe that unfolding of proNGF involves a two-steps mechanism. The distinct structural properties of proNGF as compared to NGF agree with and rationalise a different functional role of the precursor

    Osteoclast Activated FoxP3+ CD8+ T-Cells Suppress Bone Resorption in vitro

    Get PDF
    BACKGROUND: Osteoclasts are the body's sole bone resorbing cells. Cytokines produced by pro-inflammatory effector T-cells (T(EFF)) increase bone resorption by osteoclasts. Prolonged exposure to the T(EFF) produced cytokines leads to bone erosion diseases such as osteoporosis and rheumatoid arthritis. The crosstalk between T-cells and osteoclasts has been termed osteoimmunology. We have previously shown that under non-inflammatory conditions, murine osteoclasts can recruit naïve CD8 T-cells and activate these T-cells to induce CD25 and FoxP3 (Tc(REG)). The activation of CD8 T-cells by osteoclasts also induced the cytokines IL-2, IL-6, IL-10 and IFN-γ. Individually, these cytokines can activate or suppress osteoclast resorption. PRINCIPAL FINDINGS: To determine the net effect of Tc(REG) on osteoclast activity we used a number of in vitro assays. We found that Tc(REG) can potently and directly suppress bone resorption by osteoclasts. Tc(REG) could suppress osteoclast differentiation and resorption by mature osteoclasts, but did not affect their survival. Additionally, we showed that Tc(REG) suppress cytoskeletal reorganization in mature osteoclasts. Whereas induction of Tc(REG) by osteoclasts is antigen-dependent, suppression of osteoclasts by Tc(REG) does not require antigen or re-stimulation. We demonstrated that antibody blockade of IL-6, IL-10 or IFN-γ relieved suppression. The suppression did not require direct contact between the Tc(REG) and osteoclasts. SIGNIFICANCE: We have determined that osteoclast-induced Tc(REG) can suppress osteoclast activity, forming a negative feedback system. As the CD8 T-cells are activated in the absence of inflammatory signals, these observations suggest that this regulatory loop may play a role in regulating skeletal homeostasis. Our results provide the first documentation of suppression of osteoclast activity by CD8 regulatory T-cells and thus, extend the purview of osteoimmunology
    • …
    corecore