14,596 research outputs found

    General solution of an exact correlation function factorization in conformal field theory

    Full text link
    We discuss a correlation function factorization, which relates a three-point function to the square root of three two-point functions. This factorization is known to hold for certain scaling operators at the two-dimensional percolation point and in a few other cases. The correlation functions are evaluated in the upper half-plane (or any conformally equivalent region) with operators at two arbitrary points on the real axis, and a third arbitrary point on either the real axis or in the interior. This type of result is of interest because it is both exact and universal, relates higher-order correlation functions to lower-order ones, and has a simple interpretation in terms of cluster or loop probabilities in several statistical models. This motivated us to use the techniques of conformal field theory to determine the general conditions for its validity. Here, we discover a correlation function which factorizes in this way for any central charge c, generalizing previous results. In particular, the factorization holds for either FK (Fortuin-Kasteleyn) or spin clusters in the Q-state Potts models; it also applies to either the dense or dilute phases of the O(n) loop models. Further, only one other non-trivial set of highest-weight operators (in an irreducible Verma module) factorizes in this way. In this case the operators have negative dimension (for c < 1) and do not seem to have a physical realization.Comment: 7 pages, 1 figure, v2 minor revision

    Determination of thermodynamic properties of AeroZINE-50, phase 1

    Get PDF
    Literature survey of, and test procedure for determination of thermodynamic properties of AeroZINE-5

    Polyandrous females avoid costs of inbreeding

    Get PDF
    Why do females typically mate with more than one male? Female mating patterns have broad implications for sexual selection, speciation and conflicts of interest between the sexes, and yet they are poorly understood. Matings inevitably have costs, and for females, the benefits of taking more than one mate are rarely obvious. One possible explanation is that females gain benefits because they can avoid using sperm from genetically incompatible males, or invest less in the offspring of such males. It has been shown that mating with more than one male can increase offspring viability, but we present the first clear demonstration that this occurs because females with several mates avoid the negative effects of genetic incompatibility. We show that in crickets, the eggs of females that mate only with siblings have decreased hatching success. However, if females mate with both a sibling and a non-sibling they avoid altogether the low egg viability associated with sibling matings. If similar effects occur in other species, inbreeding avoidance may be important in understanding the prevalence of multiple mating

    Percolation Crossing Formulas and Conformal Field Theory

    Full text link
    Using conformal field theory, we derive several new crossing formulas at the two-dimensional percolation point. High-precision simulation confirms these results. Integrating them gives a unified derivation of Cardy's formula for the horizontal crossing probability Πh(r)\Pi_h(r), Watts' formula for the horizontal-vertical crossing probability Πhv(r)\Pi_{hv}(r), and Cardy's formula for the expected number of clusters crossing horizontally Nh(r)\mathcal{N}_h(r). The main step in our approach implies the identification of the derivative of one primary operator with another. We present operator identities that support this idea and suggest the presence of additional symmetry in c=0c=0 conformal field theories.Comment: 12 pages, 5 figures. Numerics improved; minor correction

    Clustering Memes in Social Media

    Full text link
    The increasing pervasiveness of social media creates new opportunities to study human social behavior, while challenging our capability to analyze their massive data streams. One of the emerging tasks is to distinguish between different kinds of activities, for example engineered misinformation campaigns versus spontaneous communication. Such detection problems require a formal definition of meme, or unit of information that can spread from person to person through the social network. Once a meme is identified, supervised learning methods can be applied to classify different types of communication. The appropriate granularity of a meme, however, is hardly captured from existing entities such as tags and keywords. Here we present a framework for the novel task of detecting memes by clustering messages from large streams of social data. We evaluate various similarity measures that leverage content, metadata, network features, and their combinations. We also explore the idea of pre-clustering on the basis of existing entities. A systematic evaluation is carried out using a manually curated dataset as ground truth. Our analysis shows that pre-clustering and a combination of heterogeneous features yield the best trade-off between number of clusters and their quality, demonstrating that a simple combination based on pairwise maximization of similarity is as effective as a non-trivial optimization of parameters. Our approach is fully automatic, unsupervised, and scalable for real-time detection of memes in streaming data.Comment: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM'13), 201

    Single-shot single-gate RF spin readout in silicon

    Full text link
    For solid-state spin qubits, single-gate RF readout can help minimise the number of gates required for scale-up to many qubits since the readout sensor can integrate into the existing gates required to manipulate the qubits (Veldhorst 2017, Pakkiam 2018). However, a key requirement for a scalable quantum computer is that we must be capable of resolving the qubit state within single-shot, that is, a single measurement (DiVincenzo 2000). Here we demonstrate single-gate, single-shot readout of a singlet-triplet spin state in silicon, with an average readout fidelity of 82.9%82.9\% at a 3.3 kHz3.3~\text{kHz} measurement bandwidth. We use this technique to measure a triplet TT_- to singlet S0S_0 relaxation time of 0.62 ms0.62~\text{ms} in precision donor quantum dots in silicon. We also show that the use of RF readout does not impact the maximum readout time at zero detuning limited by the S0S_0 to TT_- decay, which remained at approximately 2 ms2~\text{ms}. This establishes single-gate sensing as a viable readout method for spin qubits

    In-plane Magnetic Field Dependent Magnetoresistance of Gated Asymmetric Double Quantum Wells

    Full text link
    We have investigated experimentally the magnetoresistance of strongly asymmetric double-wells. The structures were prepared by inserting a thin Al0.3_{0.3}Ga0.7_{0.7}As barrier into the GaAs buffer layer of a standard modulation-doped GaAs/Al0.3_{0.3}Ga0.7_{0.7}As heterostructure. The resulting double-well system consists of a nearly rectangular well and of a triangular well coupled by tunneling through the thin barrier. With a proper choice of the barrier parameters one can control the occupancy of the two wells and of the two lowest (bonding and antibonding) subbands. The electron properties can be further influenced by applying front- or back-gate voltage.Comment: 4 pages, 5 figures, elsart/PHYEAUTH macros; to be presented on the EP2DS-15 Conference in Nara, Japan. Revised version. To appear in Physica

    Study of propellant valve leakage in a vacuum Final summary report

    Get PDF
    Adverse effects of liquid propellant leakage past control valves in vacuum environmen

    Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors

    Get PDF
    Double-quantum-well field-effect transistors with a grating gate exhibit a sharply resonant, voltage tuned terahertz photoconductivity. The voltage tuned resonance is determined by the plasma oscillations of the composite structure. The resonant photoconductivity requires a double-quantum well but the mechanism whereby plasma oscillations produce changes in device conductance is not understood. The phenomenon is potentially important for fast, tunable terahertz detectors
    corecore