16 research outputs found

    Towards Rapid Multi-robot Learning from Demonstration at the RoboCup Competition

    Full text link
    Abstract. We describe our previous and current efforts towards achiev-ing an unusual personal RoboCup goal: to train a full team of robots directly through demonstration, on the field of play at the RoboCup venue, how to collaboratively play soccer, and then use this trained team in the competition itself. Using our method, HiTAB, we can train teams of collaborative agents via demonstration to perform nontrivial joint behaviors in the form of hierarchical finite-state automata. We discuss HiTAB, our previous efforts in using it in RoboCup 2011 and 2012, recent experimental work, and our current efforts for 2014, then suggest a new RoboCup Technical Challenge problem in learning from demonstration. Imagine that you are at an unfamiliar disaster site with a team of robots, and are faced with a previously unseen task for them to do. The robots have only rudimentary but useful utility behaviors implemented. You are not a programmer. Without coding them, you have only a few hours to get your robots doing useful collaborative work in this new environment. How would you do this

    Velocity Control of an Omnidirectional RoboCup Player with Recurrent Neural Networks

    No full text

    Dispatch of UAVs for Urban Vehicular Networks: A Deep Reinforcement Learning Approach

    No full text
    International audienceDue to the dynamic nature of connectivity in terrestrial vehicular networks, it is of great benefit to deploy unmanned aerial vehicles (UAVs) in these networks to act as relays. As a result, a remarkable number of studies have exploited UAVs to bridge the communication gaps between terrestrial vehicles, and sometimes despite their unoptimized mobility, their restricted communication coverage, and their limited energy resources. However, it was noted that for an intermittently connected vehicular network, UAVs could not cover all sparse areas all the time. Even worse, when deploying enough UAVs to cover all these areas, the probability of inter-UAV collisions increases, and it will be complex to control their movements efficiently. Consequently, it is required to dispatch an organized and intelligent group of UAVs to perform communication relays in the long term while keeping their connectivity, minimizing their average energy consumption, and providing an efficient coverage strategy. To meet these requirements, we propose a deep reinforcement learning (DRL) framework, called DISCOUNT (Dispatch of UAVs for Urban VANETs). Extensive simulations have been conducted to evaluate the performance of the proposed framework. It has been shown that the proposed framework significantly outperforms two commonly-used baseline techniques and some reinforcement learning methods in terms of energy consumption, coverage, and routing performances

    Exploration strategies for homeostatic agents

    No full text
    This paper evaluates two new strategies for investigating artificial animals called animats. Animats are homeostatic agents with the objective of keeping their internal variables as close to optimal as possible. Steps towards the optimal are rewarded and steps away punished. Using reinforcement learning for exploration and decision making, the animats can consider predetermined optimal/acceptable levels in light of current levels, giving them greater flexibility for exploration and better survival chances. This paper considers the resulting strategies as evaluated in a range of environments, showing them to outperform common reinforcement learning, where internal variables are not taken into consideration
    corecore