28 research outputs found

    Generation and orientation of organoxenon molecule H–Xe–CCH in the gas phase

    Get PDF
    We report on the first observation of the organoxenon HXeCCH molecule in the gas phase. This molecule has been prepared in a molecular beam experiment by 193 nm photolysis of an acetylene molecule on Xen clusters (¯n ≈ 390). Subsequently the molecule has been oriented via the pseudofirst-order Stark effect in a strong electric field of the polarized laser light combined with the weak electrostatic field in the extraction region of a time-of-flight spectrometer. The experimental evidence for the oriented molecule has been provided by measurements of its photodissociation. For comparison, photolysis of C₂H₂ on Arn clusters (¯n ≈ 280) has been measured. Here the analogous rare gas molecule HArCCH could not be generated. The interpretation of our experimental findings has been supported by ab initio calculations. In addition, the experiment together with the calculations reveals information on the photochemistry of the HXeCCH molecule. The 193 nm radiation excites the molecule predominantly into the 2¹∑⁺ state, which cannot dissociate the Xe-H bond directly, but the system evolves along the Xe-C coordinate to a conical intersection of a slightly non-linear configuration with the dissociative 1¹∏ state, which then dissociates the Xe-H bond

    Ring formation and hydration effects in electron attachment to misonidazole

    Get PDF
    This research was funded by CZECH SCIENCE FOUNDATION grant number 19-01159S; Czech Ministry of Education Youth and Sports via OP RDE Grant no. CZ.02.2.69/0.0/16_027/0008355; S.D. acknowledges funding from the FWF, Vienna (P30332).We study the reactivity of misonidazole with low-energy electrons in a water environment combining experiment and theoretical modelling. The environment is modelled by sequential hydration of misonidazole clusters in vacuum. The well-defined experimental conditions enable computational modeling of the observed reactions. While the NO- 2 dissociative electron attachment channel is suppressed, as also observed previously for other molecules, the OH- channel remains open. Such behavior is enabled by the high hydration energy of OH- and ring formation in the neutral radical co-fragment. These observations help to understand the mechanism of bio-reductive drug action. Electron-induced formation of covalent bonds is then important not only for biological processes but may find applications also in technology.publishersversionpublishe

    Decomposition of copper formate clusters: insight into elementary steps of calcination and carbon dioxide activation

    No full text
    The decomposition of copper formate clusters is investigated in the gas phase by infrared multiple photon dissociation of Cu(II)n(HCO2)2n+1-, n8. In combination with quantum chemical calculations and reactivity measurements using oxygen, elementary steps of the decomposition of copper formate are characterized, which play a key role during calcination as well as for the function of copper hydride based catalysts. The decomposition of larger clusters (n>2) takes place exclusively by the sequential loss of neutral copper formate units Cu(II)(HCO2)2 or Cu(II)2(HCO2)4, leading to clusters with n=1 or n=2. Only for these small clusters, redox reactions are observed as discussed in detail previously, including the formation of formic acid or loss of hydrogen atoms, leading to a variety of Cu(I) complexes. The stoichiometric monovalent copper formate clusters Cu(I)m(HCO2)m+1-, (m=1,2) decompose exclusively by decarboxylation, leading towards copper hydrides in oxidation state +I. Copper oxide centers are obtained via reactions of molecular oxygen with copper hydride centers, species containing carbon dioxide radical anions as ligands or a Cu(0) center. However, stoichiometric copper(I) and copper(II) formate Cu(I)(HCO2)2- and Cu(II)(HCO2)3-, respectively, is unreactive towards oxygen.(VLID)4795188Version of recor

    Structural properties of gas-phase molybdenum oxide clusters [Mo4O13]2-, [HMo4O13]-, and [CH3Mo4O13]- studied by collision-induced dissociation

    No full text
    Molybdenum oxide-based catalysts are widely used for the ammoxidation of toluene, methanation of CO, or hydrodeoxygenation. As a first step towards a gas-phase model system, we investigate here structural properties of mass-selected [Mo4O13]2-, [HMo4O13]-, and [CH3Mo4O13]- by a combination of collision-induced dissociation (CID) experiments and quantum chemical calculations. According to calculations, the common structural motif is an eight-membered ring composed of four MoO2 units and four O atoms. The 13th O atom is located above the center of the ring and connects two to four Mo centers. For [Mo4O13]2- and [HMo4O13]-, dissociation requires opening or rearrangement of the ring structure, which is quite facile for the doubly charged [Mo4O13]2-, but energetically more demanding for [HMo4O13]-. In the latter case, the hydrogen atom is found to stay preferentially with the negatively charged fragments [HMo2O7]- or [HMoO4]-. The doubly charged species [Mo4O13]2- loses one MoO3 unit at low energies while Coulomb explosion into the complementary fragments [Mo2O6]- and [Mo2O7]- dominates at elevated collision energies. [CH3Mo4O13]- affords rearrangements of the methyl group with low barriers, preferentially eliminating formaldehyde, while the ring structure remains intact. [CH3Mo4O13]- also reacts efficiently with water, leading to methanol or formaldehyde elimination.(VLID)4795195Version of recor

    Release of formic acid from copper formate: hydride, proton coupled electron and hydrogen atom transfer all play their role

    No full text
    Although the mechanism for the transformation of carbon dioxide to formate with copper hydride is well understood, it is not clear how formic acid is ultimately released. Herein, we show how formic acid is formed in the decomposition of the copper formate clusters Cu(II)(HCOO)3- and Cu(II)2(HCOO)5-. Infrared irradiation resonant with the antisymmetric C-O stretching mode activates the cluster, resulting in the release of formic acid and carbon dioxide. For the binary cluster, electronic structure calculations indicate that CO2 is eliminated first, through hydride transfer from formate to copper. Formic acid is released via protoncoupled electron transfer (PCET) to a second formate ligand, evidenced by close to zero partial charge and spin density at the hydrogen atom in the transition state. Concomitantly, the two copper centers are reduced from Cu(II) to Cu(I). Depending on the detailed situation, either PCET or hydrogen atom transfer (HAT) takes place.(VLID)4795182Version of recor

    Photodissociation of sodium iodide clusters doped with small hydrocarbons

    No full text
    Marine aerosols consist of a variety of compounds and play an important role in many atmospheric processes. In the present study, sodium iodide clusters with their simple isotope pattern serve as model systems for laboratory studies to investigate the role of iodide in the photochemical processing of seasalt aerosols. Salt clusters doped with camphor, formate and pyruvate are studied in a Fourier transform ion cyclotron resonance mass spectrometer (FTICR MS) coupled to a tunable laser system in both UV and IR range. The analysis is supported by ab initio calculations of absorption spectra and energetics of dissociative channels. We provide quantitative analysis of IRMPD measurements by reconstructing onephoton spectra and comparing them with the calculated ones. While neutral camphor is adsorbed on the cluster surface, the formate and pyruvate ions replace an iodide ion. The photodissociation spectra revealed several wavelengthspecific fragmentation pathways, including the carbon dioxide radical anion formed by photolysis of pyruvate. Camphor and pyruvate doped clusters absorb in the spectral region above 290nm, which is relevant for tropospheric photochemistry, leading to internal conversion followed by intramolecular vibrational redistribution, which leads to decomposition of the cluster. Potential photodissociation products of pyruvate in the actinic region may be formed with a cross section of <210-20cm2, determined by the experimental noise level.(VLID)4795210Version of recor

    Electronic spectroscopy and nanocalorimetry of hydrated magnesium ions [Mg(H2O)n]+, n = 20-70: spontaneous formation of a hydrated electron?

    No full text
    Hydrated singly charged magnesium ions [Mg(H2O)n]+ are thought to consist of an Mg2+ ion and a hydrated electron for n > 15. This idea is based on mass spectra, which exhibit a transition from [MgOH(H2O)n-1]+ to [Mg(H2O)n]+ around n = 15-22, black-body infrared radiative dissociation, and quantum chemical calculations. Here, we present photodissociation spectra of size-selected [Mg(H2O)n]+ in the range of n = 20-70 measured for photon energies of 1.0-5.0 eV. The spectra exhibit a broad absorption from 1.4 to 3.2 eV, with two local maxima around 1.7-1.8 eV and 2.1-2.5 eV, depending on cluster size. The spectra shift slowly from n = 20 to n = 50, but no significant change is observed for n = 50-70. Quantum chemical modeling of the spectra yields several candidates for the observed absorptions, including five- and six-fold coordinated Mg2+ with a hydrated electron in its immediate vicinity, as well as a solvent-separated Mg2+/e- pair. The photochemical behavior resembles that of the hydrated electron, with barrierless interconversion into the ground state following the excitation.(VLID)4795200Version of recor
    corecore