739 research outputs found

    Identification of potential locations for small hydropower plant based on resources time footprint: A case study in Dan River Basin, China

    Get PDF
    mall hydropower has attracted extensive interest as a clean technology. This study first identified possible sites of small hydropower plants with estimated capacity, and then utilized resources time footprint as a novel way to evaluate the impact of small hydropower plants on the aspects of materials, CO2, labor, and land. Resources time footprint is a sustainability indicator that uses a uniform time unit (years). It assesses whether the usage of resources exceeds the amount allocated to different people and generations. The smaller the value of resources time footprint, the more environmentally friendly is the process. Preferential locations for small hydropower in Dan River were specified, with a potential capacity ranging from 273 to 1175 kW. Resources time footprint of copper is 8.9–47.3 times as large as that of steel. Resources time footprint of CO2 emissions is much smaller than that of other aspects, revealing that small hydropower has a great potential to mitigate the greenhouse effect. The overall resources time footprint decreases with an increase in the installed capacity. The methodology proposed in this study can be used to identify the ideal locations for setting up small hydropower plants in other regions as well. © 2023 The AuthorsThis work was funded by the ESPEC Foundation for Global Environment Research and Technology (Charitable Trust) (ESPEC Prize for the Encouragement of Environmental Studies). This work was also conducted under the joint research program of the Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University. This work was financially supported by the JST SPRING (grant number JPMJSP2125 ). X.H. would like to take this opportunity to thank the “Interdisciplinary Frontier Next-Generation Researcher Program of the Tokai Higher Education and Research System.” The author X.H. would like to thank the inspiring discussion with Dr. Nobuko Kawaguchi and Bifu Huang. We thank Linwei Tao for data validatio

    Ku70 alleviates neurodegeneration in drosophila models of Huntington's disease

    Get PDF
    DNA damage accumulates in genome DNA during the long life of neurons, thus DNA damage repair is indispensable to keep normal functions of neurons. We previously reported that Ku70, a critical molecule for DNA double strand break (DSB) repair, is involved in the pathology of Huntington's disease (HD). Mutant huntingtin (Htt) impaired Ku70 function via direct interaction, and Ku70 supplementation recovered phenotypes of a mouse HD model. In this study, we generate multiple Drosophila HD models that express mutant huntingtin (Htt) in eye or motor neuron by different drivers and show various phenotypes. In such fly models, Ku70 co-expression recovers lifespan, locomotive activity and eye degeneration. In contrast, Ku70 reduction by heterozygous null mutation or siRNA-mediated knock down accelerates lifespan shortening and locomotion disability. These results collectively support that Ku70 is a critical mediator of the HD pathology and a candidate therapeutic target in HD

    Real Time Imaging of Human Progenitor Neurogenesis

    Get PDF
    Human neural progenitors are increasingly being employed in drug screens and emerging cell therapies targeted towards neurological disorders where neurogenesis is thought to play a key role including developmental disorders, Alzheimer’s disease, and depression. Key to the success of these applications is understanding the mechanisms by which neurons arise. Our understanding of development can provide some guidance but since little is known about the specifics of human neural development and the requirement that cultures be expanded in vitro prior to use, it is unclear whether neural progenitors obey the same developmental mechanisms that exist in vivo. In previous studies we have shown that progenitors derived from fetal cortex can be cultured for many weeks in vitro as undifferentiated neurospheres and then induced to undergo neurogenesis by removing mitogens and exposing them to supportive substrates. Here we use live time lapse imaging and immunocytochemical analysis to show that neural progenitors use developmental mechanisms to generate neurons. Cells with morphologies and marker profiles consistent with radial glia and recently described outer radial glia divide asymmetrically and symmetrically to generate multipolar intermediate progenitors, a portion of which express ASCL1. These multipolar intermediate progenitors subsequently divide symmetrically to produce CTIP2+ neurons. This 3-cell neurogenic scheme echoes observations in rodents in vivo and in human fetal slice cultures in vitro, providing evidence that hNPCs represent a renewable and robust in vitro assay system to explore mechanisms of human neurogenesis without the continual need for fresh primary human fetal tissue. Knowledge provided by this and future explorations of human neural progenitor neurogenesis will help maximize the safety and efficacy of new stem cell therapies by providing an understanding of how to generate physiologically-relevant cell types that maintain their identities when placed in diagnostic or transplantation environments

    Drosophila PQBP1 Regulates Learning Acquisition at Projection Neurons in Aversive Olfactory Conditioning

    Get PDF
    Polyglutamine tract-binding protein-1 (PQBP1) is involved in the transcription-splicing coupling, and its mutations cause a group of human mental retardation syndromes. We generated a fly model in which the Drosophila homolog of PQBP1 (dPQBP1) is repressed by insertion of piggyBac. In classical odor conditioning, learning acquisition was significantly impaired in homozygous piggyBac-inserted flies, whereas the following memory retention was completely normal. Mushroom bodies (MBs) and antennal lobes were morphologically normal in dPQBP1-mutant flies. Projection neurons (PNs) were not reduced in number and their fiber connections were not changed, whereas gene expressions including NMDA receptor subunit 1 (NR1) were decreased in PNs. Targeted double-stranded RNA-mediated silencing of dPQBP1 in PNs, but not in MBs, similarly disrupted learning acquisition. NR1 overexpression in PNs rescued the learning disturbance of dPQBP1 mutants. HDAC (histone deacetylase) inhibitors, SAHA (suberoylanilide hydroxamic acid) and PBA (phenylbutyrate), that upregulated NR1 partially rescued the learning disturbance. Collectively, these findings identify dPQBP1 as a novel gene regulating learning acquisition at PNs

    The induction levels of heat shock protein 70 differentiate the vulnerabilities to mutant huntingtin among neuronal subtypes

    Get PDF
    The reason why vulnerabilities to mutant polyglutamine (polyQ) proteins are different among neuronal subtypes is mostly unknown. In this study, we compared the gene expression profiles of three types of primary neurons expressing huntingtin (htt) or ataxin-1. We found that heat shock protein 70 (hsp70), a well known chaperone molecule protecting neurons in the polyQ pathology, was dramatically upregulated only by mutant htt and selectively in the granule cells of the cerebellum. Granule cells, which are insensitive to degeneration in the human Huntington's disease (HD) pathology, lost their resistance by suppressing hsp70 with siRNA, whereas cortical neurons, affected in human HD, gained resistance by overexpressing hsp70. This indicates that induction levels of hsp70 are a critical factor for determining vulnerabilities to mutant htt among neuronal subtypes. CAT (chloramphenicol acetyltransferase) assays showed that CBF (CCAAT box binding factor, CCAAT/enhancer binding protein zeta) activated, but p53 repressed transcription of the hsp70 gene in granule cells. Basal and mutant htt-induced expression levels of p53 were remarkably lower in granule cells than in cortical neurons, suggesting that different magnitudes of p53 are linked to distinct induction levels of hsp70. Surprisingly, however, heat shock factor 1 was not activated in granule cells by mutant htt. Collectively, different levels of hsp70 among neuronal subtypes might be involved in selective neuronal death in the HD pathology

    A Neurotoxic Phosphoform of Elk-1 Associates with Inclusions from Multiple Neurodegenerative Diseases

    Get PDF
    Neurodegenerative diseases are characterized by a number of features including the formation of inclusions, early synaptic degeneration and the selective loss of neurons. Molecules serving as links between these shared features have yet to be identified. Identifying candidates within the diseased microenvironment will open up novel avenues for therapeutic intervention. The transcription factor Elk-1 resides within multiple brain areas both in nuclear and extranuclear neuronal compartments. Interestingly, its de novo expression within a single dendrite initiates neuronal death. Given this novel regionalized function, we assessed whether extranuclear Elk-1 and/or phospho-Elk-1 (pElk-1) protein might be associated with a spectrum of human neurodegenerative disease cases including Lewy body Disease (e.g. Parkinson's), Alzheimer's disease, and Huntington's Disease. We first determined the importance of Elk-1 post-translational modifications on its ability to initiate regionalized cell death. We next screened human cases from three major neurodegenerative diseases to look for remarkable levels of Elk-1 and/or pElk-1 protein as well as their association with inclusions characteristic of these diseases. We compared our findings to age-matched control cases. We find that the ability of Elk-1 to initiate regionalized neuronal death depends on a specific phosphosite, T417. Furthermore, we find that T417+ Elk-1 uniquely associates with several types of inclusions present in cases of human Lewy body Disease, Alzheimer's disease, and Huntington's Disease. These results suggest a molecular link between the presence of inclusions and neuronal loss that is shared across a spectrum of neurodegenerative disease
    corecore