117 research outputs found
Solving frustration-free spin systems
We identify a large class of quantum many-body systems that can be solved
exactly: natural frustration-free spin-1/2 nearest-neighbor Hamiltonians on
arbitrary lattices. We show that the entire ground state manifold of such
models can be found exactly by a tensor network of isometries acting on a space
locally isomorphic to the symmetric subspace. Thus, for this wide class of
models real-space renormalization can be made exact. Our findings also imply
that every such frustration-free spin model satisfies an area law for the
entanglement entropy of the ground state, establishing a novel large class of
models for which an area law is known. Finally, we show that our approach gives
rise to an ansatz class useful for the simulation of almost frustration-free
models in a simple fashion, outperforming mean field theory.Comment: 5 pages, 1 figur
Efficient measurement-based quantum computing with continuous-variable systems
We present strictly efficient schemes for scalable measurement-based quantum
computing using continuous-variable systems: These schemes are based on
suitable non-Gaussian resource states, ones that can be prepared using
interactions of light with matter systems or even purely optically. Merely
Gaussian measurements such as optical homodyning as well as photon counting
measurements are required, on individual sites. These schemes overcome
limitations posed by Gaussian cluster states, which are known not to be
universal for quantum computations of unbounded length, unless one is willing
to scale the degree of squeezing with the total system size. We establish a
framework derived from tensor networks and matrix product states with infinite
physical dimension and finite auxiliary dimension general enough to provide a
framework for such schemes. Since in the discussed schemes the logical encoding
is finite-dimensional, tools of error correction are applicable. We also
identify some further limitations for any continuous-variable computing scheme
from which one can argue that no substantially easier ways of
continuous-variable measurement-based computing than the presented one can
exist.Comment: 13 pages, 3 figures, published versio
Limitations of quantum computing with Gaussian cluster states
We discuss the potential and limitations of Gaussian cluster states for
measurement-based quantum computing. Using a framework of Gaussian projected
entangled pair states (GPEPS), we show that no matter what Gaussian local
measurements are performed on systems distributed on a general graph, transport
and processing of quantum information is not possible beyond a certain
influence region, except for exponentially suppressed corrections. We also
demonstrate that even under arbitrary non-Gaussian local measurements, slabs of
Gaussian cluster states of a finite width cannot carry logical quantum
information, even if sophisticated encodings of qubits in continuous-variable
(CV) systems are allowed for. This is proven by suitably contracting tensor
networks representing infinite-dimensional quantum systems. The result can be
seen as sharpening the requirements for quantum error correction and fault
tolerance for Gaussian cluster states, and points towards the necessity of
non-Gaussian resource states for measurement-based quantum computing. The
results can equally be viewed as referring to Gaussian quantum repeater
networks.Comment: 13 pages, 7 figures, details of main argument extende
Efficient and feasible state tomography of quantum many-body systems
We present a novel method to perform quantum state tomography for
many-particle systems which are particularly suitable for estimating states in
lattice systems such as of ultra-cold atoms in optical lattices. We show that
the need for measuring a tomographically complete set of observables can be
overcome by letting the state evolve under some suitably chosen random circuits
followed by the measurement of a single observable. We generalize known results
about the approximation of unitary 2-designs, i.e., certain classes of random
unitary matrices, by random quantum circuits and connect our findings to the
theory of quantum compressed sensing. We show that for ultra-cold atoms in
optical lattices established techniques like optical super-lattices, laser
speckles, and time-of-flight measurements are sufficient to perform fully
certified, assumption-free tomography. Combining our approach with tensor
network methods - in particular the theory of matrix-product states - we
identify situations where the effort of reconstruction is even constant in the
number of lattice sites, allowing in principle to perform tomography on
large-scale systems readily available in present experiments.Comment: 10 pages, 3 figures, minor corrections, discussion added, emphasizing
that no single-site addressing is needed at any stage of the scheme when
implemented in optical lattice system
Hyperpolarized 13C Spectroscopic Evaluation of Oxidative Stress in a Rodent Model of Steatohepatitis.
Nonalcoholic fatty liver disease (NAFLD) has become highly prevalent, now considered the most common liver disease in the western world. Approximately one-third of patients with NASH develop non-alchoholic steatohepatitis (NASH), histologically defined by lobular and portal inflammation, and accompanied by marked oxidative stress. Patients with NASH are at increased risk for cirrhosis and hepatocellular carcinoma, and diagnosis currently requires invasive biopsy. In animal models of NASH, particularly the methionine-choline deficient (MCD) model, profound changes are seen in redox enzymes and key intracellular antioxidants. To study antioxidant status in NASH non-invasively, we applied the redox probe hyperpolarized [1-13C] dehydroascorbic acid (HP DHA), which is reduced to Vitamin C (VitC) rapidly in the normal liver. In MCD mice, we observed a significant decrease in HP DHA to VitC conversion that accompanied hepatic fat deposition. When these animals were subsequently placed on a normal diet, resonance ratios reverted to those seen in control mice. These findings suggest that HP DHA, a potentially clinically translatable imaging agent, holds special promise in imaging NASH and other metabolic syndromes, to monitor disease progression and response to targeted therapies
Detection of early-stage NASH using non-invasive hyperpolarized 13C metabolic imaging
Non-alcoholic steatohepatitis (NASH) is characterized from its early stages by a profound remodeling of the liver microenvironment, encompassing changes in the composition and activities of multiple cell types and associated gene expression patterns. Hyperpolarized (HP
Imaging Active Infection in vivo Using D-Amino Acid Derived PET Radiotracers.
Occult bacterial infections represent a worldwide health problem. Differentiating active bacterial infection from sterile inflammation can be difficult using current imaging tools. Present clinically viable methodologies either detect morphologic changes (CT/ MR), recruitment of immune cells (111In-WBC SPECT), or enhanced glycolytic flux seen in inflammatory cells (18F-FDG PET). However, these strategies are often inadequate to detect bacterial infection and are not specific for living bacteria. Recent approaches have taken advantage of key metabolic differences between prokaryotic and eukaryotic organisms, allowing easier distinction between bacteria and their host. In this report, we exploited one key difference, bacterial cell wall biosynthesis, to detect living bacteria using a positron-labeled D-amino acid. After screening several 14C D-amino acids for their incorporation into E. coli in culture, we identified D-methionine as a probe with outstanding radiopharmaceutical potential. Based on an analogous procedure to that used for L-[methyl-11C]methionine ([11C] L-Met), we developed an enhanced asymmetric synthesis of D-[methyl-11C]methionine ([11C] D-Met), and showed that it can rapidly and selectively differentiate both E. coli and S. aureus infections from sterile inflammation in vivo. We believe that the ease of [11C] D-Met radiosynthesis, coupled with its rapid and specific in vivo bacterial accumulation, make it an attractive radiotracer for infection imaging in clinical practice
Peptidoglycan-Targeted [<sup>18</sup>F]3,3,3-Trifluoro-d-alanine Tracer for Imaging Bacterial Infection
\ua9 2024 The Authors. Published by American Chemical Society. Imaging is increasingly used to detect and monitor bacterial infection. Both anatomic (X-rays, computed tomography, ultrasound, and MRI) and nuclear medicine ([111In]-WBC SPECT, [18F]FDG PET) techniques are used in clinical practice but lack specificity for the causative microorganisms themselves. To meet this challenge, many groups have developed imaging methods that target pathogen-specific metabolism, including PET tracers integrated into the bacterial cell wall. We have previously reported the d-amino acid derived PET radiotracers d-methyl-[11C]-methionine, d-[3-11C]-alanine, and d-[3-11C]-alanine-d-alanine, which showed robust bacterial accumulation in vitro and in vivo. Given the clinical importance of radionuclide half-life, in the current study, we developed [18F]3,3,3-trifluoro-d-alanine (d-[18F]-CF3-ala), a fluorine-18 labeled tracer. We tested the hypothesis that d-[18F]-CF3-ala would be incorporated into bacterial peptidoglycan given its structural similarity to d-alanine itself. NMR analysis showed that the fluorine-19 parent amino acid d-[19F]-CF3-ala was stable in human and mouse serum. d-[19F]-CF3-ala was also a poor substrate for d-amino acid oxidase, the enzyme largely responsible for mammalian d-amino acid metabolism and a likely contributor to background signals using d-amino acid derived PET tracers. In addition, d-[19F]-CF3-ala showed robust incorporation into Escherichia coli peptidoglycan, as detected by HPLC/mass spectrometry. Based on these promising results, we developed a radiosynthesis of d-[18F]-CF3-ala via displacement of a bromo-precursor with [18F]fluoride followed by chiral stationary phase HPLC. Unexpectedly, the accumulation of d-[18F]-CF3-ala by bacteria in vitro was highest for Gram-negative pathogens in particular E. coli. In a murine model of acute bacterial infection, d-[18F]-CF3-ala could distinguish live from heat-killed E. coli, with low background signals. These results indicate the viability of [18F]-modified d-amino acids for infection imaging and indicate that improved specificity for bacterial metabolism can improve tracer performance
Recommended from our members
Quality Comparison of 3 Tesla multiparametric MRI of the prostate using a flexible surface receiver coil versus conventional surface coil plus endorectal coil setup
Abstract: Purpose: To subjectively and quantitatively compare the quality of 3 Tesla magnetic resonance imaging of the prostate acquired with a novel flexible surface coil (FSC) and with a conventional endorectal coil (ERC). Methods: Six radiologists independently reviewed 200 pairs of axial, high-resolution T2-weighted and diffusion-weighted image data sets, each containing one examination acquired with the FSC and one with the ERC, respectively. Readers selected their preferred examination from each pair and assessed every single examination using six quality criteria on 4-point scales. Signal-to-noise ratios were measured and compared. Results: Two readers preferred FSC acquisition (36.5–45%) over ERC acquisition (13.5–15%) for both sequences combined, and four readers preferred ERC acquisition (41–46%). Analysis of pooled responses for both sequences from all readers shows no significant preference for FSC or ERC. Analysis of the individual sequences revealed a pooled preference for the FSC in T2WI (38.7% vs 17.8%) and for the ERC in DWI (50.9% vs 19.6%). Patients’ weight was the only weak predictor of a preference for the ERC acquisition (p = 0.04). SNR and CNR were significantly higher in the ERC acquisitions (p<0.001) except CNR differentiating tumor lesions from benign prostate (p=0.1). Conclusion: Although readers have strong individual preferences, comparable subjective image quality can be obtained for prostate MRI with an ERC and the novel FSC. ERC imaging might be particularly valuable for sequences with inherently lower SNR as DWI and larger patients whereas the FSC is generally preferred in T2WI. FSC imaging generates a lower SNR than with an ERC
Current CONtrolled Transmit And Receive Coil Elements (C2ONTAR) for Parallel Acquisition and Parallel Excitation Techniques at High-Field MRI
A novel intrinsically decoupled transmit and receive radio-frequency coil element is presented for applications in parallel imaging and parallel excitation techniques in high-field magnetic resonance imaging. Decoupling is achieved by a twofold strategy: during transmission elements are driven by current sources, while during signal reception resonant elements are switched to a high input impedance preamplifier. To avoid B0 distortions by magnetic impurities or DC currents a resonant transmission line is used to relocate electronic components from the vicinity of the imaged object. The performance of a four-element array for 3 T magnetic resonance tomograph is analyzed by means of simulation, measurements of electromagnetic fields and bench experiments. The feasibility of parallel acquisition and parallel excitation is demonstrated and compared to that of a conventional power source-driven array of equivalent geometry. Due to their intrinsic decoupling the current-controlled elements are ideal basic building blocks for multi-element transmit and receive arrays of flexible geometry
- …