31 research outputs found

    Cross-Species Network Analysis Uncovers Conserved Nitrogen-Regulated Network Modules in Rice

    Get PDF
    In this study, we used a cross-species network approach to uncover nitrogen-regulated network modules conserved across a model and a crop species. By translating gene “network knowledge” from the data-rich model Arabidopsis (Arabidopsis thaliana) to a crop (Oryza sativa), we identified evolutionarily conserved N-regulatory modules as targets for translational studies to improve N-use efficiency in transgenic plants. To uncover such conserved N-regulatory network modules, we first generated a N-regulatory network based solely on rice (O. sativa) transcriptome and gene interaction data. Next, we enhanced the “network knowledge” in the rice N-regulatory network using transcriptome and gene interaction data from Arabidopsis and new data from Arabidopsis and rice plants exposed to the same N-treatment conditions. This cross-species network analysis uncovered a set of N-regulated transcription factors (TFs) predicted to target the same genes and network modules in both species. Supernode analysis of the TFs and their targets in these conserved network modules uncovered genes directly related to nitrogen use (e.g. N-assimilation) and to other shared biological processes indirectly related to nitrogen. This cross-species network approach was validated with members of two TF families in the supernode network, bZIP-TGA and HRS1/HHO family, have recently been experimentally validated to mediate the N-response in Arabidopsis.Fil: Obertello, Mariana. University of New York; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones en IngenierĂ­a GenĂ©tica y BiologĂ­a Molecular ; ArgentinaFil: Shrivastava, Stuti. University of New York; Estados UnidosFil: Katari, Manpreet S.. University of New York; Estados UnidosFil: Coruzzi, Gloria M.. University of New York; Estados Unido

    Modeling the global effect of the basic-leucine zipper transcription factor 1 (bZIP1) on nitrogen and light regulation in Arabidopsis

    Get PDF
    Background: Nitrogen and light are two major regulators of plant metabolism and development. While genes involved in the control of each of these signals have begun to be identified, regulators that integrate gene responses to nitrogen and light signals have yet to be determined. Here, we evaluate the role of bZIP1, a transcription factor involved in light and nitrogen sensing, by exposing wild-type (WT) and bZIP1 T-DNA null mutant plants to a combinatorial space of nitrogen (N) and light (L) treatment conditions and performing transcriptome analysis. We use ANOVA analysis combined with clustering and Boolean modeling, to evaluate the role of bZIP1 in mediating L and N signaling genome-wide. Results: This transcriptome analysis demonstrates that a mutation in the bZIP1 gene can alter the L and/or N-regulation of several gene clusters. More surprisingly, the bZIP1 mutation can also trigger N and/or L regulation of genes that are not normally controlled by these signals in WT plants. This analysis also reveals that bZIP1 can, to a large extent, invert gene regulation (e. g., several genes induced by N in WT plants are repressed by N in the bZIP1 mutant). Conclusion: These findings demonstrate that the bZIP1 mutation triggers a genome-wide de-regulation in response to L and/or N signals that range from i) a reduction of the L signal effect, to ii) unlocking gene regulation in response to L and N combinations. This systems biology approach demonstrates that bZIP1 tunes L and N signaling relationships genome-wide, and can suppress regulatory mechanisms hypothesized to be needed at different developmental stages and/or environmental conditions

    Interactive and Single Effects of Ectomycorrhiza Formation and Bacillus cereus on Metallothionein MT1 Expression and Phytoextraction of Cd and Zn by Willows

    Get PDF
    Single and joint ectomycorrhizal (+ Hebeloma mesophaeum) and bacterial (+ Bacillus cereus) inoculations of willows (Salix viminalis) were investigated for their potential and mode of action in the promotion of cadmium (Cd) and zinc (Zn) phytoextraction. Dual fungal and bacterial inoculations promoted the biomass production of willows in contaminated soil. Single inoculations either had no effect on the plant growth or inhibited it. All inoculated willows showed increased concentrations of nutritional elements (N, P, K and Zn) and decreased concentrations of Cd in the shoots. The lowest biomass production and concentration of Cd in the willows (+ B. cereus) were combined with the strongest expression of metallothioneins. It seems that biotic stress from bacterial invasion increased the synthesis of these stress proteins, which responded in decreased Cd concentrations. Contents of Cd and Zn in the stems of willows were combination-specific, but were always increased in dual inoculated plants. In conclusion, single inoculations with former mycorrhiza-associated B. cereus strains decreased the phytoextraction efficiency of willows by causing biotic stress. However, their joint inoculation with an ectomycorrhizal fungus is a very promising method for promoting the phytoextraction of Cd and Zn through combined physiological effects on the plant

    Les symbioses actinorhiziennes fixatrices d_azote : un exemple d_adaptation aux contraintes abiotiques du sol = Actinorhizal nitrogen fixing symbiosis : an example of adaptation against soil abiotic stresses

    No full text
    After water and light, nitrogen and phosphorus are the major elements limiting plant production worldwide. The use of fertilizers to offset these deficiencies is now actively disapproved because of their high price, their effect on climate change and their negative environmental impact. One solution could be to exploit plants that have acquired the ability to adapt to deficient environments. One example is given by plants that develop symbiotic associations with nitrogen-fixing bacteria in order to benefit from the large reservoir of atmospheric nitrogen. Two groups of plants are known to form nitrogen-fixing root nodules: legumes that associate with rhizobia and plants belonging to eight angiosperm families, called actinorhizal plants, that associate with the actinomycete Frankia. These plants can thrive on nitrogen-poor soil and have long been used to increase soil fertility. Among them, Casuarina a tropical tree originating from Australia, presents a very important ecological asset for Southern countries due to its high ability to colonize deficient soils. Our team has focused on the cellular and molecular studies of the plant genes involved at different steps of the interaction between Frankia and Casuarina glauca. Several candidate genes from Casuarina have been characterized, including cg12, a subtilase gene expressed during early infection events, CgMT1 a metallothionein gene involved in stress responses and CgSymRK, a gene from the signalling pathway involved at the beginning of the symbiosis. More recently, a genomic approach has been initiated in order to sequence the ESTs from roots and nodules of Casuarina. Comparison between our data and legumes EST databases should reveal molecular mechanisms that are common and unique to the two endophytic root nodule symbioses and bring new information to further our understanding of the evolution of plant endosymbiosis across the plant kingdom

    The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants

    Get PDF
    BACKGROUND: Histone methylation modifies the epigenetic state of target genes to regulate gene expression in the context of developmental and environmental changes. Previously, we used a positive genetic screen to identify an Arabidopsis mutant, cli186, which was impaired in carbon and light signaling. Here, we report a deletion of the Arabidopsis histone methyltransferase SDG8 in this mutant (renamed sdg8-5), which provides a unique opportunity to study the global function of a specific histone methyltransferase within a multicellular organism. RESULTS: To assess the specific role of SDG8, we examine how the global histone methylation patterns and transcriptome were altered in the sdg8-5 deletion mutant compared to wild-type, within the context of transient light and carbon treatments. Our results reveal that the sdg8 deletion is associated with a significant reduction of H3K36me3, preferentially towards the 3' end of the gene body, accompanied by a reduction in gene expression. We uncover 728 direct targets of SDG8 that have altered methylation in the sdg8-5 mutant and are also bound by SDG8. As a group, this set of SDG8 targets is enriched in specific biological processes including defense, photosynthesis, nutrient metabolism and energy metabolism. Importantly, 64% of these SDG8 targets are responsive to light and/or carbon signals. CONCLUSIONS: The histone methyltransferase SDG8 functions to regulate the H3K36 methylation of histones associated with gene bodies in Arabidopsis. The H3K36me3 mark in turn is associated with high-level expression of a specific set of light and/or carbon responsive genes involved in photosynthesis, metabolism and energy production
    corecore