231 research outputs found

    Remote detection of fumarolic gas chemistry at Vulcano, Italy, using an FT-IR spectral radiometer

    Get PDF
    An infrared absorption spectroscopy remote sensing technique was used to determine the S02/HCl ratio in fumarolic plumes at Vulcano, Italy. The measurements were made from the southern crater rim of Fossa Grande Crater, about 400 m from the fumarolic area in the crater. Infrared absorption spectra of HCl and SO, were observed for four fumaroles a few tens of metres apart using the hot fumarolic surface as an infrared light source. The measured S02/HCl ratios in the FA, F47, FW and lower parti of the F21 fumaroles were 4.5-5.4, 3.5, 9.5-11.2 and 5.8 respectively. The S02/HCl ratio of the FA fumarole was higher than that of the gas collected directly in the fumarolic vent (S02/HCl ratio = 2.9), and was closer to the S~,,,,,,/HCl ratio (= 4.6) of the collected gas. Our results show that the SO,/HCl ratios of two fumaroles only a few tens of metres apart exhibits differences of about twofold. This suggests that this remote monitoring technique is capable of detecting spatial distribution in the S02/HCl ratios of volcanic plumes. Because temporal variations in S/Cl ratios can provide precursory signals for volcanic eruptions [l-31, this remote sensing technique can used efficiently for evaluation of volcanic activity

    Temporal Evolution of Spatially-Resolved Individual Star Spots on a Planet-Hosting Solar-type Star: Kepler 17

    Get PDF
    Star spot evolution is visible evidence of the emergence/decay of the magnetic field on stellar surface, and it is therefore important for the understanding of the underlying stellar dynamo and consequential stellar flares. In this paper, we report the temporal evolution of individual star spot area on the hot-Jupiter-hosting active solar-type star Kepler 17 whose transits occur every 1.5 days. The spot longitude and area evolution are estimated (1) from the stellar rotational modulations of Kepler data and (2) from the brightness enhancements during the exoplanet transits caused by existence of large star spots. As a result of the comparison, number of spots, spot locations, and the temporal evolution derived from the rotational modulations is largely different from those of in-transit spots. We confirm that although only two light curve minima appear per rotation, there are clearly many spots present on the star. We find that the observed differential intensity changes are sometimes consistent with the spot pattern detected by transits, but they sometimes do not match with each other. Although the temporal evolution derived from the rotational modulation differs from those of in-transit spots to a certain degree, the emergence/decay rates of in-transit spots are within an order of magnitude of those derived for sunspots as well as our previous research based only on rotational modulations. This supports a hypothesis that the emergence/decay of sunspots and extremely-large star spots on solar-type stars occur through the same underlying processes.Comment: 37 pages, 12 figures, 1 table. Accepted for publication in The Astrophysical Journa

    Fractal Reconnection in Solar and Stellar Environments

    Full text link
    Recent space based observations of the Sun revealed that magnetic reconnection is ubiquitous in the solar atmosphere, ranging from small scale reconnection (observed as nanoflares) to large scale one (observed as long duration flares or giant arcades). Often the magnetic reconnection events are associated with mass ejections or jets, which seem to be closely related to multiple plasmoid ejections from fractal current sheet. The bursty radio and hard X-ray emissions from flares also suggest the fractal reconnection and associated particle acceleration. We shall discuss recent observations and theories related to the plasmoid-induced-reconnection and the fractal reconnection in solar flares, and their implication to reconnection physics and particle acceleration. Recent findings of many superflares on solar type stars that has extended the applicability of the fractal reconnection model of solar flares to much a wider parameter space suitable for stellar flares are also discussed.Comment: Invited chapter to appear in "Magnetic Reconnection: Concepts and Applications", Springer-Verlag, W. D. Gonzalez and E. N. Parker, eds. (2016), 33 pages, 18 figure

    Candidate Water Vapor Lines to Locate the H2O Snowline through High-dispersion Spectroscopic Observations. III. Submillimeter H2 16O and H2 18O Lines

    Get PDF
    In this paper, we extend the results presented in our former papers on using ortho-H216O line profiles to constrain the location of the H2O snowline in T Tauri and Herbig Ae disks, to include submillimeter para-H216O and ortho- and para-H218O lines. Since the number densities of the ortho- and para-H218O molecules are about 560 times smaller than their 16O analogs, they trace deeper into the disk than the ortho-H216O lines (down to z = 0, i.e., the midplane). Thus these H218O lines are potentially better probes of the position of the H2O snowline at the disk midplane, depending on the dust optical depth. The values of the Einstein A coefficients of submillimeter candidate water lines tend to be lower (typically <10‑4 s‑1) than infrared candidate water lines. Thus in the submillimeter candidate water line cases, the local intensity from the outer optically thin region in the disk is around 104 times smaller than that in the infrared candidate water line cases. Therefore, in the submillimeter lines, especially H218O and para-H216O lines with relatively lower upper state energies (∼a few 100 K) can also locate the position of the H2O snowline. We also investigate the possibility of future observations with ALMA to identify the position of the water snowline. There are several candidate water lines that trace the hot water gas inside the H2O snowline in ALMA Bands 5–10

    Life Beyond the Solar System: Space Weather and Its Impact on Habitable Worlds

    Get PDF
    The search of life in the Universe is a fundamental problem of astrobiology and a major priority for NASA. A key area of major progress since the NASA Astrobiology Strategy 2015 (NAS15) has been a shift from the exoplanet discovery phase to a phase of characterization and modeling of the physics and chemistry of exoplanetary atmospheres, and the development of observational strategies for the search for life in the Universe by combining expertise from four NASA science disciplines including heliophysics, astrophysics, planetary science and Earth science. The NASA Nexus for Exoplanetary System Science (NExSS) has provided an efficient environment for such interdisciplinary studies. Solar flares, coronal mass ejections and solar energetic particles produce disturbances in interplanetary space collectively referred to as space weather, which interacts with the Earth upper atmosphere and causes dramatic impact on space and ground-based technological systems. Exoplanets within close in habitable zones around M dwarfs and other active stars are exposed to extreme ionizing radiation fluxes, thus making exoplanetary space weather (ESW) effects a crucial factor of habitability. In this paper, we describe the recent developments and provide recommendations in this interdisciplinary effort with the focus on the impacts of ESW on habitability, and the prospects for future progress in searching for signs of life in the Universe as the outcome of the NExSS workshop held in Nov 29 - Dec 2, 2016, New Orleans, LA. This is one of five Life Beyond the Solar System white papers submitted by NExSS to the National Academy of Sciences in support of the Astrobiology Science Strategy for the Search for Life in the Universe.Comment: 5 pages, the white paper was submitted to the National Academy of Sciences in support of the Astrobiology Science Strategy for the Search for Life in the Univers

    The Extreme Space Weather Event in 1903 October/November: An Outburst from the Quiet Sun

    Full text link
    While the Sun is generally more eruptive during its maximum and declining phases, observational evidence shows certain cases of powerful solar eruptions during the quiet phase of the solar activity. Occurring in the weak Solar Cycle 14 just after its minimum, the extreme space weather event in 1903 October -- November was one of these cases. Here, we reconstruct the time series of geomagnetic activity based on contemporary observational records. With the mid-latitude magnetograms, the 1903 magnetic storm is thought to be caused by a fast coronal mass ejection (~1500 km/s) and is regarded as an intense event with an estimated minimum Dst' of ~-513 nT The reconstructed time series has been compared with the equatorward extension of auroral oval (~44.1{\deg} in invariant latitude) and the time series of telegraphic disturbances. This case study shows that potential threats posed by extreme space weather events exist even during weak solar cycles or near their minima.Comment: 20 pages, 5 figures, 1 table, and accepted for publication in the ApJ

    Impact of Space Weather on Climate and Habitability of Terrestrial Type Exoplanets

    Get PDF
    The current progress in the detection of terrestrial type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favorable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of astrospheric, atmospheric and surface environments of exoplanets in habitable zones around G-K-M dwarfs including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles, and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favorable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro) physical, chemical, and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the habitable zone to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.Comment: 206 pages, 24 figures, 1 table; Review paper. International Journal of Astrobiology (2019

    Dust Continuum Emission and the Upper Limit Fluxes of Submillimeter Water Lines of the Protoplanetary Disk around HD 163296 Observed by ALMA

    Get PDF
    In this paper, we analyze the upper limit fluxes of submillimeter ortho-H2-16O 321 GHz, para-H2-18O 322 GHz, and HDO 335 GHz lines from the protoplanetary disk around the Herbig Ae star HD 163296, using the Atacama Large Millimeter/Submillimeter Array. These water lines are considered to be the best candidate submillimeter lines to locate the position of the H2O snowline, on the basis of our previous model calculations. We compare the upper limit fluxes with the values calculated by our models with dust emission included, and we constrain the line-emitting region and the dust opacity from the observations. We conclude that, if the outer edge of the region with a high water abundance and the position of the water snowline are both beyond 8 au, then themillimeter dust opacity κ mm will have a value larger than 2.0 cm2 g−1. In addition, the position of the water snowline must lie inside 20 au if the millimeter dust opacity κ mm is 2.0 cm2 g−1. Future observations of the dust continuum emission at higher angular resolution and submillimeter water lines with a longer observation time are required to clarify the detailed structures and the position of the H2O snowline in the disk midplane

    An ALMA Molecular Inventory of Warm Herbig Ae Disks. I. Molecular Rings, Asymmetries, and Complexity in the HD 100546 Disk

    Get PDF
    Observations of disks with the Atacama Large Millimeter/submillimeter Array (ALMA) allow us to map the chemical makeup of nearby protoplanetary disks with unprecedented spatial resolution and sensitivity. The typical outer Class II disk observed with ALMA is one with an elevated C/O ratio and a lack of oxygen-bearing complex organic molecules, but there are now some interesting exceptions: three transition disks around Herbig Ae stars all show oxygen-rich gas traced via the unique detections of the molecules SO and CH3OH. We present the first results of an ALMA line survey at ≈337–357 GHz of such disks and focus this paper on the first Herbig Ae disk to exhibit this chemical signature—HD 100546. In these data, we detect 19 different molecules including NO, SO2, and CH3OCHO (methyl formate). We also make the first tentative detections of H2 CO 13 and 34SO in protoplanetary disks. Multiple molecular species are detected in rings, which are, surprisingly, all peaking just beyond the underlying millimeter continuum ring at ≈200 au. This result demonstrates a clear connection between the large dust distribution and the chemistry in this flat disk. We discuss the physical and/or chemical origin of these substructures in relation to ongoing planet formation in the HD 100546 disk. We also investigate how similar and/or different this molecular makeup of this disk is to other chemically well-characterized Herbig Ae disks. The linerich data we present motivate the need for more ALMA line surveys to probe the observable chemistry in Herbig Ae systems, which offer unique insight into the composition of disks ices, including complex organic molecules

    An ALMA Molecular Inventory of Warm Herbig Ae Disks. II. Abundant Complex Organics and Volatile Sulphur in the IRS 48 Disk

    Get PDF
    The Atacama Large Millimeter/submillimeter Array (ALMA) can probe the molecular content of planet-forming disks with unprecedented sensitivity. These observations allow us to build up an inventory of the volatiles available for forming planets and comets. Herbig Ae transition disks are fruitful targets due to the thermal sublimation of complex organic molecules (COMs) and likely H2O-rich ices in these disks. The IRS 48 disk shows a particularly rich chemistry that can be directly linked to its asymmetric dust trap. Here, we present ALMA observations of the IRS 48 disk where we detect 16 different molecules and make the first robust detections of H2 CO 13 , 34SO, 33SO, and c-H2COCH2 (ethylene oxide) in a protoplanetary disk. All of the molecular emissions, aside from CO, are colocated with the dust trap, and this includes newly detected simple molecules such as HCO+, HCN, and CS. Interestingly, there are spatial offsets between different molecular families, including between the COMs and sulfur-bearing species, with the latter being more azimuthally extended and radially located further from the star. The abundances of the newly detected COMs relative to CH3OH are higher than the expected protostellar ratios, which implies some degree of chemical processing of the inherited ices during the disk lifetime. These data highlight IRS 48 as a unique astrochemical laboratory to unravel the full volatile reservoir at the epoch of planet and comet formation and the role of the disk in (re)setting chemical complexity
    • …
    corecore