163 research outputs found

    Versatile lithium fluoride thin-film solid-state detectors for nanoscale radiation imaging

    Get PDF
    Point defects in insulating materials are successfully used for radiation detectors. Among them, colour centres in lithium fluoride (LiF) are well known for application in dosimeters and in light-emitting devices and lasers. LiF thin-film detectors for extreme ultraviolet radiation, soft and hard X-rays, based on photoluminescence from aggregate electronic defects, are currently under development for imaging application with laboratory radiation sources, e.g. laser-driven plasma sources and conventional X-ray tubes, as well as large-scale facilities, e.g. synchrotrons and free-electron lasers. Among the peculiarities of these detectors, noteworthy ones are the very high intrinsic spatial resolution ( 1 cm2) and the wide dynamic range. Moreover, they are insensitive to ambient light and no development process is needed. The latent images stored in the LiF thin layer can be read with fluorescence optical microscopy techniques. These detectors prove to be highly versatile, as LiF is sensitive to almost any kind of radiation, including charged particles and neutrons, and can be grown in the form of polycrystalline thin films, whose photoluminescence response can be tailored trough the control of the growth conditions

    VUV-Vis optical characterization of Tetraphenyl-butadiene films on glass and specular reflector substrates from room to liquid Argon temperature

    Full text link
    The use of efficient wavelength-shifters from the vacuum-ultraviolet to the photosensor's range of sensitivity is a key feature in detectors for Dark Matter search and neutrino physics based on liquid argon scintillation detection. Thin film of Tetraphenyl-butadiene (TPB) deposited onto the surface delimiting the active volume of the detector and/or onto the photosensor optical window is the most common solution in current and planned experiments. Detector design and response can be evaluated and correctly simulated only when the properties of the optical system in use (TPB film + substrate) are fully understood. Characterization of the optical system requires specific, sometimes sophisticated optical methodologies. In this paper the main features of TPB coatings on different, commonly used substrates is reported, as a result of two independent campaigns of measurements at the specialized optical metrology labs of ENEA and University of Tor Vergata. Measured features include TPB emission spectra with lineshape and relative intensity variation recorded as a function of the film thickness and for the first time down to LAr temperature, as well as optical reflectance and transmittance spectra of the TPB coated substrates in the wavelength range of the TPB emission

    Advanced spectroscopic investigation of colour centres in LiF crystals irradiated with monochromatic hard x-rays

    Get PDF
    Nominally-pure lithium fluoride (LiF) crystals were irradiated with monochromatic hard x-rays of energy 5, 7, 9 and 12 keV at the METROLOGIE beamline of the SOLEIL synchrotron facility, in order to understand the role of the selected x-ray energy on their visible photoluminescence (PL) response, which is used for high spatial resolution 2D x-ray imaging detectors characterized by a wide dynamic range. At the energies of 7 and 12 keV the irradiations were performed at five different doses corresponding to five uniformly irradiated areas, while at 5 and 9 keV only two irradiations at two different doses were carried out. The doses were planned in a range between 4 and 1.4 × 103 Gy (10.5 mJ cm−3 to 3.7 J cm−3), depending on the x-ray energy. After irradiation at the energies of 7 and 12 keV, the spectrally-integrated visible PL intensity of the F2 and F3+ colour centres (CCs) generated in the LiF crystals, carefully measured by fluorescence microscopy under blue excitation, exhibits a linear dependence on the irradiation dose in the investigated dose range. This linear behaviour was confirmed by the optical absorption spectra of the irradiated spots, which shows a similar linear behaviour for both the F2 and F3+ CCs, as derived from their overlapping absorption band at around 450 nm. At the highest x-ray energy, the average concentrations of the radiation-induced F, F2 and F3+ CCs were also estimated. The volume distributions of F2 defects in the crystals irradiated with 5 and 9 keV x-rays were reconstructed in 3D by measuring their PL signal using a confocal laser scanning microscope operating in fluorescence mode. On-going investigations are focusing on the results obtained through this z-scanning technique to explore the potential impact of absorption effects at the excitation laser wavelength

    Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    Get PDF
    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 1011 to 1015 protons/cm2. The visible photoluminescence spectra of radiation-induced F2 and F3+ laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 103 to about 106 Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping

    Optical characterization of lithium fluoride thin-film imaging detectors for monochromatic hard X-rays

    Get PDF
    Lithium fluoride (LiF) crystals and thin films have been successfully investigated as X-ray imaging detectors based on optical reading of visible photoluminescence emitted by stable radiation-induced F2 and F+3 colour centres. In this work, the visible photoluminescence response of optically-transparent LiF film detectors of three different thicknesses, grown by thermal evaporation on Si(100) substrates and irradiated with monochromatic 7 keV X-rays at several doses in the range between 13 and 4.5 × 103 Gy, was carefully investigated by fluorescence optical microscopy. For all the film thicknesses, the photoluminescence response linearly depends on the irradiation dose in the investigated dose range. The lowest detected dose, delivered to the thinnest LiF film, only 0.5 μm thick, is estimated 13 Gy. Edge-enhancement imaging experiments, conducted by irradiating LiF film detectors at the same energy placing an Au mesh in front of them at a distance of 15 mm, allowed estimating a spatial resolution of (0.38 ± 0.05) μm, which is comparable to the microscope one. This very high spatial resolution in LiF film radiation detectors based on colour centres photoluminescence is combined with the availability of a wide field of view on large areas

    Femtograms of Interferon-γ Suffice to Modulate the Behavior of Jurkat Cells: A New Light in Immunomodulation.

    Get PDF
    Since interferon-\u3b3 (IFN-\u3b3) tunes both innate and adaptive immune systems, it was expected to enter clinical practice as an immunomodulatory drug. However, the use of IFN-\u3b3 has been limited by its dose-dependent side effects. Low-dose medicine, which is emerging as a novel strategy to treat diseases, might circumvent this restriction. Several clinical studies have proved the efficacy of therapies with a low dose of cytokines subjected to kinetic activation, while no in vitro data are available. To fill this gap, we investigated whether low concentrations, in the femtogram range, of kinetically activated IFN-\u3b3 modulate the behavior of Jurkat cells, a widely used experimental model that has importantly contributed to the present knowledge about T cell signaling. In parallel, IFN-\u3b3 in the nanogram range was used and shown to activate Signal transducer and activator of transcription (STAT)-1 and then to induce suppressor of cytokine signaling-1 (SOCS-1), which inhibits downstream signaling. When added together, femtograms of IFN-\u3b3 interfere with the transduction cascade activated by nanograms of IFN-\u3b3 by prolonging the activation of STAT-1 through the downregulation of SOCS-1. We conclude that femtograms of IFN-\u3b3 exert an immunomodulatory action in Jurkat cells

    High resolution and high efficiency coloration of lithium fluoride by soft X-rays irradiation

    Get PDF
    The efficient coloration of LiF material, in the form of bulk and films, by EUV and soft X-rays emitted by a laser-plasma source is demonstrated. The short penetration depth of soft-X-rays is exploited to obtain high spatial resolution luminescent patterns while the high dynamic range of proportionality between X-ray dose and coloration is exploited for using LiF as image detector in micro-radiography and soft X-ray microscopy applications

    Demonstration and Comparison of Operation of Photomultiplier Tubes at Liquid Argon Temperature

    Full text link
    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photo multiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R&D program of the WArP Collaboration. During these testes the Hamamatsu PMTs showed superb performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments

    thermoluminescence in lif crystals and the role of impurities

    Get PDF
    Eight nominally pure lithium fluoride crystals, obtained from a single LiF crystal containing less than 100 ppm impurities, were irradiated by gamma-rays from a 60 Co source at room temperature, with doses from 8.4 to 2.5 x 10 5 Gy, but one at -60 °C. Optical density measurements were performed to investigate the radiation-induced color centres (CCs) and to evaluate their concentrations. Thermoluminescence (TL) glow curves were collected and simulated by a first-order kinetics approach, and from the best-fit procedure ten glow peaks (GPs) spanning from 100 to 450 °C were highlighted. A comparative analysis of GP intensities and CC concentrations as a function of the irradiation dose has questioned their association as obtained in previous measurements, showing the impurities, less than 10 18 cm -3 , still playing a predominant role in TL spectra. New measurements on LiF crystals more pure, at least an order of magnitude, are required to establish for sure the association of GPs to CCs
    • …
    corecore