20 research outputs found

    Communicating Information on Eruptions and Their Impacts from the Earliest Times Until the Late Twentieth Century

    Get PDF
    Volcanoes hold a fascination for human beings and, before they were recorded by literate observers, eruptions were portrayed in art, were recalled in legends and became incorporated into religious practices: being viewed as agents of punishment, bounty or intimidation depending upon their state of activity and the culture involved. In the Middle East the earliest depiction of an eruption is a wall painting dating from the Neolithic at Çatal Hüyük and the earliest record dates from the third millennium BCE. Knowledge of volcanoes increased over time. In some parts of the world knowledge of eruptions was passed down by oral transmission, but as far as written records were concerned, in the first century CE only 9 volcanoes in the Mediterranean region were recognised, together with Mount Cameroon in West Africa. In the next 1000 years the list grew by 17, some 14 of these volcanoes being in Japan. The first recorded eruptions in Indonesia occurred in 1000 and 1006, and volcanoes in newly settled Iceland increased the number to just 48 in 1380 CE. After this the list continued to increase, with important regions such as New Zealand and Hawaii only being added in the past 200 years. Only from 1900 did the rate of growth decline significantly (Simkin et al. 1981: 23; Simkin, 1993 Siebert et al. 2011; Simkin, 1993), but it is sobering to recall that in the twentieth century major eruptions have occurred from volcanoes that were considered inactive or extinct examples including: Mount Lamington - Papua New Guinea, 1951; Mount Arenal - Costa Rica, 1968 and Nyos - Cameroon, 1986. Although there are instances where the human impact of historical eruptions have been compiled - with examples including the 1883 eruption of Krakatau (Simkin and Fiske (1983) and 1943 -1952 eruption of Parícutin (Luhr and Simkin, 1993) - these are exceptions and there remains a significant gap in knowledge about both the short and long-term effects on societies of major eruptions which occurred before the 1980s. Following a broad review the chapter provides a discussion of the ways in which information has been collected, compiled and disseminated from the earliest times until the 1980s in two case study areas: the Azores Islands (Portugal) and southern Italy. In Italy information on eruptions stretches back to prehistoric times and has become progressively better known over more than 2,000 years of written history, yet even here there remain significant gaps in the record even for events that took place between 1900 and 1990. In contrast, located in the middle of the Atlantic, the Azores have been isolated for much of their history and illustrate the difficulties involved in using indigenous sources to compile, not only assessments of impact, but also at a more basic level a complete list of historical events with accurate dates

    The Geological Evolution of Merapi Volcano, Central Java, Indonesia

    No full text
    Merapi is an almost persistently active basalt to basaltic andesite volcanic complex in Central Java (Indonesia) and often referred to as the type volcano for small-volume pyroclastic flows generated by gravitational lava dome failures (Merapi-type nuées ardentes). Stratigraphic field data, published and new radiocarbon ages in conjunction with a new set of 40K–40Ar and 40Ar–39Ar ages, and whole-rock geochemical data allow a reassessment of the geological and geochemical evolution of the volcanic complex. An adapted version of the published geological map of Merapi [(Wirakusumah et al. 1989), Peta Geologi Gunungapi Merapi, Jawa Tengah (Geologic map of Merapi volcano, Central Java), 1:50,000] is presented, in which eight main volcano stratigraphic units are distinguished, linked to three main evolutionary stages of the volcanic complex—Proto-Merapi, Old Merapi and New Merapi. Construction of the Merapi volcanic complex began after 170 ka. The two earliest (Proto-Merapi) volcanic edifices, Gunung Bibi (109 ± 60 ka), a small basaltic andesite volcanic structure on Merapi’s north-east flank, and Gunung Turgo and Gunung Plawangan (138 ± 3 ka; 135 ± 3 ka), two basaltic hills in the southern sector of the volcano, predate the Merapi cone sensu stricto. Old Merapi started to grow at ~30 ka, building a stratovolcano of basaltic andesite lavas and intercalated pyroclastic rocks. This older Merapi edifice was destroyed by one or, possibly, several flank failures, the latest of which occurred after 4.8 ± 1.5 ka and marks the end of the Old Merapi stage. The construction of the recent Merapi cone (New Merapi) began afterwards. Mostly basaltic andesite pyroclastic and epiclastic deposits of both Old and New Merapi (14C years BP) cover the lower flanks of the edifice. A shift from medium-K to high-K character of the eruptive products occurred at ~1,900 14C years BP, with all younger products having high-K affinity. The radiocarbon record points towards an almost continuous activity of Merapi since this time, with periods of high eruption frequency interrupted by shorter intervals of apparently lower eruption rates, which is reflected in the geochemical composition of the eruptive products. The Holocene stratigraphic record reveals that fountain collapse pyroclastic flows are a common phenomenon at Merapi. The distribution and run-out distances of these flows have frequently exceeded those of the classic Merapi-type nuées ardentes of the recent activity. Widespread pumiceous fallout deposits testify the occurrence of moderate to large (subplinian) eruptions (VEI 3–4) during the mid to late Holocene. VEI 4 eruptions, as identified in the stratigraphic record, are an order of magnitude larger than any recorded historical eruption of Merapi, except for the 1872 AD and, possibly, the October–November 2010 events. Both types of eruptive and volcanic phenomena require careful consideration in long-term hazard assessment at Merapi
    corecore