146 research outputs found
Evidence for geomagnetic excursions recorded in Brunhes and Matuyama Chron lavas from the transâMexican volcanic belt
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99072/1/arar_methodology.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/99072/2/jgrb50214.pd
Ganzheitliche Untersuchungsmethoden zur Erfassung und PrĂŒfung der QualitĂ€t ökologischer Lebensmittel: Stand der Entwicklung und Validierung
In dem wachsenden Markt ökologischer Lebensmittel werden Methoden zur produktorientierten QualitÀtserfassung gefordert. Dabei geht es u.a. um die Unterscheidung von Produkten aus unterschiedlichen Anbauverfahren.
Die Ziele des Projektes waren daher:
1. ausgewĂ€hlte ganzheitliche Methoden gemÀà ISO 17025 zu validieren, d.h. Laborprozesse festzulegen, sowie EinflussgröĂen und Verfahrensmerkmale zu bestimmen,
2. zu testen, ob diese Verfahren eine Differenzierung von definierten Proben statistisch abgesichert zeigen können.
.
Diese Ziele konnten erreicht werden. Es wurde bestÀtigt, dass einige der Methoden auf Grundlage dokumentierter Prozeduren Lebensmittel aus definierten Anbauversuchen (u.a. aus dem DOK-Versuch am FIBL/CH) reproduzierbar unterscheiden können.
Die Koordination und die Validierung der Kupferchlorid-Kristallisation sowie die Messung der Polyphenole lag bei der UniversitĂ€t Kassel, FG Ăkologische LebensmittelqualitĂ€t und ErnĂ€hrungskultur. Die KWALIS GmbH, Dipperz, validierte die Fluoreszenz-Anregungsspektroskopie und die Bestimmung des Physiologischen AminosĂ€urestatus, die EQC GmbH, Weidenbach die elektrochemischen Messungen. Dr. Kromidas, SaarbrĂŒcken ĂŒbernahm die Beratung der Validierungsprozeduren.
.
An Blindproben wurde untersucht, ob die Verfahren fĂŒr Weizen- und Möhrenproben aus definierten Anbau- und Sortenversuchen geeignet sind (Fragestellung der Validierung). Die Proben wurden von unabhĂ€ngiger Stelle (OEL-FAL, Trenthorst) codiert. Die Proben wurden gleichzeitig an alle Partner versandt; dadurch konnten die Methoden auch untereinander verglichen werden.
Die Methoden Kupferchlorid-Kristallisation, Fluoreszenz-Anregungsspektroskopie und Physiologischer AminosĂ€urestatus sind fĂŒr die Fragestellung geeignet. Mit allen drei Methoden konnten die Proben differenziert und gruppiert werden. DarĂŒber hinaus konnten mit der Fluoreszenz-Anregungsspektroskopie und ĂŒber den physiologischen AminosĂ€urestatus die Proben auch den Anbauweisen richtig zugeordnet werden. Allerdings ist damit noch keine Aussage ĂŒber die FĂ€higkeit dieser Verfahren möglich, generell Proben aus ökologischer und konventioneller Herkunft zu unterscheiden. DafĂŒr sind weitere Untersuchungen sowohl an Proben definierter Herkunft als auch an Marktproben notwendig
Noninvasive estimation of tumour viability in a xenograft model of human neuroblastoma with proton magnetic resonance spectroscopy (1H MRS)
The aim of the study was to evaluate proton magnetic resonance spectroscopy (1H MRS) for noninvasive biological characterisation of neuroblastoma xenografts in vivo. For designing the experiments, human neuroblastoma xenografts growing subcutaneously in nude rats were analysed in vivo with 1H MRS and magnetic resonance imaging at 4.7âT. The effects of spontaneous tumour growth and antiangiogenesis treatment, respectively, on spectral characteristics were evaluated. The spectroscopic findings were compared to tumour morphology, proliferation and viable tumour tissue fraction. The results showed that signals from choline (Cho)-containing compounds and mobile lipids (MLs) dominated the spectra. The individual ML/Cho ratios for both treated and untreated tumours were positively correlated with tumour volume (P<0.05). There was an inverse correlation between the ML/Cho ratio and the viable tumour fraction (r=â0.86, P<0.001). Higher ML/Cho ratios concomitant with pronounced histological changes were seen in spectra from tumours treated with the antiangiogenic drug TNP-470, compared to untreated control tumours (P<0.05). In conclusion, the ML/Cho ratio obtained in vivo by 1H MRS enabled accurate assessment of the viable tumour fraction in a human neuroblastoma xenograft model. 1H MRS also revealed early metabolic effects of antiangiogenesis treatment. 1H MRS could prove useful as a tool to monitor experimental therapy in preclinical models of neuroblastoma, and possibly also in children
Use of neoadjuvant chemotherapy prior to radical hysterectomy in cervical cancer: monitoring tumour shrinkage and molecular profile on magnetic resonance and assessment of 3-year outcome
Use of neoadjuvant chemotherapy prior to radical hysterectomy in cervical cancer: monitoring tumour shrinkage and molecular profile on magnetic resonance and assessment of 3-year outcome The objective of this study is to assess tumour response to neoadjuvant chemotherapy prior to radical hysterectomy in cervical cancer using magnetic resonance (MR) to monitor tumour volume and changes in molecular profile and to compare the survival to that of a control group. Eligibility included Stage Ib-IIb previously untreated cervical tumours >10 cm(3). Neoadjuvant chemotherapy in 22 patients ( methotrexate 300 mg m(-2) (with folinic acid rescue), bleomycin 30 mg m(-2), cisplatin 60 mg m(-2)) was repeated twice weekly for three courses and followed by radical hysterectomy. Post-operative radiotherapy was given in 14 cases. A total of 23 patients treated either with radical surgery or chemoradiotherapy over the same time period comprised the nonrandomised control group. MR scans before and after neoadjuvant chemotherapy and in the control group documented tumour volume on imaging and metabolites on in vivo spectroscopy. Changes were compared using a paired t-test. Survival was calculated using the Kaplan-Meier method. There were no significant differences between the neoadjuvant chemotherapy and control groups in age ( mean, s.d. 43.3 +/- 10, 44.7 +/- 8.5 years, respectively, P = 0.63) or tumour volume (medians, quartiles 35.8, 17.8, 57.7 cm(3) vs 23.0, 15.0, 37.0 cm(3), respectively, P = 0.068). The reduction in tumour volume post-chemotherapy (median, quartiles 7.5, 3.0, 19.0 cm(3)) was significant ( P = 0.002). The reduction in - CH2 triglyceride approached significance ( P = 0.05), but other metabolites were unchanged. The 3-year survival in the chemotherapy group (49.1%) was not significantly different from the control group (46%, P = 0.94). There is a significant reduction in tumour volume and - CH2 triglyceride levels after neoadjuvant chemotherapy, but there is no survival advantage
Magnetic resonance detects metabolic changes associated with chemotherapy-induced apoptosis
Apoptosis was induced by treating L1210 leukaemia cells with mechlorethamine, and SW620 colorectal cells with doxorubicin. The onset and progression of apoptosis were monitored by assessing caspase activation, mitochondrial transmembrane potential, phosphatidylserine externalization, DNA fragmentation and cell morphology. In parallel, 31P magnetic resonance (MR) spectra of cell extracts were recorded. In L1210 cells, caspase activation was detected at 4 h. By 3 h, the MR spectra showed a steady decrease in NTP and NAD, and a significant build-up of fructose 1,6-bisphosphate (F-1,6-P) dihydroxyacetonephosphate and glycerol-3-phosphate, indicating modulation of glycolysis. Treatment with iodoacetate also induced a build-up of F-1,6-P, while preincubation with two poly(ADP-ribose) polymerase inhibitors, 3-aminobenzamide and nicotinamide, prevented the drop in NAD and the build-up of glycolytic intermediates. This suggested that our results were due to inhibition of glyceraldehyde-3-phosphate dehydrogenase, possibly as a consequence of NAD depletion following poly(ADP-ribose) polymerase activation. Doxorubicin treatment of the adherent SW620 cells caused cells committed to apoptosis to detach. F-1,6-P was observed in detached cells, but not in treated cells that remained attached. This indicated that our observations were not cell line- or treatment-specific, but were correlated with the appearance of apoptotic cells following drug treatment. The 31P MR spectrum of tumours responding to chemotherapy could be modulated by similar effects
Predicting the outcome of grade II glioma treated with temozolomide using proton magnetic resonance spectroscopy
International audienceBACKGROUND: This study was designed to evaluate proton magnetic resonance spectroscopy ((1)H-MRS) for monitoring the WHO grade II glioma (low-grade glioma (LGG)) treated with temozolomide (TMZ).METHODS: This prospective study included adult patients with progressive LGG that was confirmed by magnetic resonance imaging (MRI). Temozolomide was administered at every 28 days. Response to TMZ was evaluated by monthly MRI examinations that included MRI with volumetric calculations and (1)H-MRS for assessing Cho/Cr and Cho/NAA ratios. Univariate, multivariate and receiver-operating characteristic statistical analyses were performed on the results.RESULTS: A total of 21 LGGs from 31 patients were included in the study, and followed for at least n=14 months during treatment. A total of 18 (86%) patients experienced a decrease in tumour volume with a greater decrease of metabolic ratios. Subsequently, five (28%) of these tumours resumed growth despite the continuation of TMZ administration with an earlier increase of metabolic ratios of 2 months. Three (14%) patients did not show any volume or metabolic change. The evolutions of the metabolic ratios, mean(Cho/Cr)(n) and mean(Cho/NAA)(n), were significantly correlated over time (Spearman Ï=+0.95) and followed a logarithmic regression (P>0.001). The evolutions over time of metabolic ratios, mean(Cho/Cr)(n) and mean(Cho/NAA)(n), were significantly correlated with the evolution of the mean relative decrease of tumour volume, mean(ÎV(n)/V(o)), according to a linear regression (P<0.001) in the 'response/no relapse' patient group, and with the evolution of the mean tumour volume (meanV(n)), according to an exponential regression (P<0.001) in the 'response/relapse' patient group. The mean relative decrease of metabolic ratio, mean(Î(Cho/Cr)(n)/(Cho/Cr)(o)), at n=3 months was predictive of tumour response over the 14 months of follow-up. The mean relative change between metabolic ratios, mean((Cho/NAA)(n)-(Cho/Cr)(n))/(Cho/NAA)(n), at n=4 months was predictive of tumour relapse with a significant cutoff of 0.046, a sensitivity of 60% and a specificity of 100% (P=0.004).CONCLUSIONS: The (1)H-MRS profile changes more widely and rapidly than tumour volume during the response and relapse phases, and represents an early predictive factor of outcome over 14 months of follow-up. Thus, (1)H-MRS may be a promising, non-invasive tool for predicting and monitoring the clinical response to TMZ
Breast imaging technology: Imaging biochemistry - applications to breast cancer
The use of magnetic resonance spectroscopy (MRS) to investigate breast tumour biochemistry in vivo is reviewed. To this end, results obtained both from patients in vivo and from tumour extracts and model systems are discussed. An association has been observed between transformation and an increase in phosphomonoesters (PMEs) detected in the (31)P MRS spectrum, as well as an increase in choline-containing metabolites detected in the (1)H spectrum. A decrease in PME content after treatment is associated with response to treatment as assessed by tumour volume. Experiments in model systems aimed at understanding the underlying biochemical processes are presented, as well as data indicating the usefulness of MRS in monitoring the uptake and metabolism of some chemotherapeutic agents
Detection of polyol accumulation in a new ovarian carcinoma cell line, CABA I: a1H NMR study
Ovarian carcinomas represent a major form of gynaecological malignancies, whose treatment consists mainly of surgery and chemotherapy. Besides the difficulty of prognosis, therapy of ovarian carcinomas has reached scarce improvement, as a consequence of lack of efficacy and development of drug-resistance. The need of different biochemical and functional parameters has grown, in order to obtain a larger view on processes of biological and clinical significance. In this paper we report novel metabolic features detected in a series of different human ovary carcinoma lines, by 1H NMR spectroscopy of intact cells and their extracts. Most importantly, a new ovarian adenocarcinoma line CABA I, showed strong signals in the spectral region between 3.5 and 4.0 p.p.m., assigned for the first time to the polyol sorbitol (39±11ânmol/106âcells). 13C NMR analyses of these cells incubated with [1-13C]-D-glucose demonstrated labelled-sorbitol formation. The other ovarian carcinoma cell lines (OVCAR-3, IGROV 1, SK-OV-3 and OVCA432), showed, in the same spectral region, intense resonances from other metabolites: glutathione (up to 30ânmol/106âcells) and myo-inositol (up to 50ânmol/106âcells). Biochemical and biological functions are suggested for these compounds in human ovarian carcinoma cells, especially in relation to their possible role in cell detoxification mechanisms during tumour progression
Evaluation of the effects of photodynamic therapy with phosphorus 31 magnetic resonance spectroscopy
Distinct choline metabolic profiles are associated with differences in gene expression for basal-like and luminal-like breast cancer xenograft models
<p>Abstract</p> <p>Background</p> <p>Increased concentrations of choline-containing compounds are frequently observed in breast carcinomas, and may serve as biomarkers for both diagnostic and treatment monitoring purposes. However, underlying mechanisms for the abnormal choline metabolism are poorly understood.</p> <p>Methods</p> <p>The concentrations of choline-derived metabolites were determined in xenografted primary human breast carcinomas, representing basal-like and luminal-like subtypes. Quantification of metabolites in fresh frozen tissue was performed using high-resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS).</p> <p>The expression of genes involved in phosphatidylcholine (PtdCho) metabolism was retrieved from whole genome expression microarray analyses.</p> <p>The metabolite profiles from xenografts were compared with profiles from human breast cancer, sampled from patients with estrogen/progesterone receptor positive (ER+/PgR+) or triple negative (ER-/PgR-/HER2-) breast cancer.</p> <p>Results</p> <p>In basal-like xenografts, glycerophosphocholine (GPC) concentrations were higher than phosphocholine (PCho) concentrations, whereas this pattern was reversed in luminal-like xenografts. These differences may be explained by lower choline kinase (<it>CHKA</it>, <it>CHKB</it>) expression as well as higher PtdCho degradation mediated by higher expression of phospholipase A2 group 4A (<it>PLA2G4A</it>) and phospholipase B1 (<it>PLB1</it>) in the basal-like model. The glycine concentration was higher in the basal-like model. Although glycine could be derived from energy metabolism pathways, the gene expression data suggested a metabolic shift from PtdCho synthesis to glycine formation in basal-like xenografts. In agreement with results from the xenograft models, tissue samples from triple negative breast carcinomas had higher GPC/PCho ratio than samples from ER+/PgR+ carcinomas, suggesting that the choline metabolism in the experimental models is representative for luminal-like and basal-like human breast cancer.</p> <p>Conclusions</p> <p>The differences in choline metabolite concentrations corresponded well with differences in gene expression, demonstrating distinct metabolic profiles in the xenograft models representing basal-like and luminal-like breast cancer. The same characteristics of choline metabolite profiles were also observed in patient material from ER+/PgR+ and triple-negative breast cancer, suggesting that the xenografts are relevant model systems for studies of choline metabolism in luminal-like and basal-like breast cancer.</p
- âŠ