62 research outputs found
Simulations of decomposition kinetics of Fe-Cr solid solutions during thermal aging
The decomposition of Fe-Cr solid solutions during thermal aging is modeled by
Atomistic Kinetic Monte Carlo (AKMC) simulations, using a rigid lattice
approximation with composition dependant pair interactions that can reproduce
the change of sign of the mixing energy with the alloy composition. The
interactions are fitted on ab initio mixing energies and on the experimental
phase diagram, as well as on the migration barriers in iron and chromium rich
phases. Simulated kinetics is compared with 3D atom probe and neutron
scattering experiments.Comment: 6 pages, 5 figures, PTM 201
Nucleation of Al3Zr and Al3Sc in aluminum alloys: from kinetic Monte Carlo simulations to classical theory
Zr and Sc precipitate in aluminum alloys to form the compounds Al3Zr and
Al3Sc which for low supersaturations of the solid solution have the L12
structure. The aim of the present study is to model at an atomic scale this
kinetics of precipitation and to build a mesoscopic model based on classical
nucleation theory so as to extend the field of supersaturations and annealing
times that can be simulated. We use some ab-initio calculations and
experimental data to fit an Ising model describing thermodynamics of the Al-Zr
and Al-Sc systems. Kinetic behavior is described by means of an atom-vacancy
exchange mechanism. This allows us to simulate with a kinetic Monte Carlo
algorithm kinetics of precipitation of Al3Zr and Al3Sc. These kinetics are then
used to test the classical nucleation theory. In this purpose, we deduce from
our atomic model an isotropic interface free energy which is consistent with
the one deduced from experimental kinetics and a nucleation free energy. We
test di erent mean-field approximations (Bragg-Williams approximation as well
as Cluster Variation Method) for these parameters. The classical nucleation
theory is coherent with the kinetic Monte Carlo simulations only when CVM is
used: it manages to reproduce the cluster size distribution in the metastable
solid solution and its evolution as well as the steady-state nucleation rate.
We also find that the capillary approximation used in the classical nucleation
theory works surprisingly well when compared to a direct calculation of the
free energy of formation for small L12 clusters.Comment: submitted to Physical Review B (2004
Kinetics in one-dimensional lattice gas and Ising models from time-dependent density functional theory
Time-dependent density functional theory, proposed recently in the context of
atomic diffusion and non-equilibrium processes in solids, is tested against
Monte Carlo simulation. In order to assess the basic approximation of that
theory, the representation of non-equilibrium states by a local equilibrium
distribution function, we focus on one-dimensional lattice models, where all
equilibrium properties can be worked exactly from the known free energy as a
functional of the density. This functional determines the thermodynamic driving
forces away from equilibrium. In our studies of the interfacial kinetics of
atomic hopping and spin relaxation, we find excellent agreement with
simulations, suggesting that the method is useful also for treating more
complex problems.Comment: 8 pages, 5 figures, submitted to Phys. Rev.
Statistical Derivation of Basic Equations of Diffusional Kinetics in Alloys with Application to the Description of Diffusion of Carbon in Austenite
Basic equations of diffusional kinetics in alloys are statistically derived
using the master equation approach. To describe diffusional transformations in
substitution alloys, we derive the "quasi-equilibrium" kinetic equation which
generalizes its earlier versions by taking into account possible "interaction
renormalization" effects. For the interstitial alloys Me-X, we derive the
explicit expression for the diffusivity D of an interstitial atom X which
notably differs from those used in previous phenomenological treatments. This
microscopic expression for D is applied to describe the diffusion of carbon in
austenite basing on some simple models of carbon-carbon interaction. The
results obtained enable us to make certain conclusions about the real form of
these interactions, and about the scale of the "transition state entropy" for
diffusion of carbon in austenite.Comment: 26 pages, 5 postscript figures, LaTe
Studies of concentration and temperature dependencies of precipitation kinetics in iron-copper alloys using kinetic monte carlo and stochastic statistical simulations
The earlier-developed ab initio model and the kinetic Monte Carlo method
(KMCM) are used to simulate precipitation in a number of iron-copper alloys
with different copper concentrations x and temperatures T. The same simulations
are also made using the improved version of the earlier-suggested stochastic
statistical method (SSM). The results obtained enable us to make a number of
general conclusions about the dependencies of the decomposition kinetics in
Fe-Cu alloys on x and T. We also show that the SSM describes the precipitation
kinetics in a fair agreement with the KMCM, and employing the SSM in
conjunction with the KMCM enables us to extend the KMC simulations to the
longer evolution times. The results of simulations seem to agree with available
experimental data for Fe-Cu alloys within statistical errors of simulations and
the scatter of experimental results. Comparison of results of simulations to
experiments for some multicomponent Fe-Cu-based alloys enables us to make
certain conclusions about the influence of alloying elements in these alloys on
the precipitation kinetics at different stages of evolution.Comment: 18 pages, 17 postscript figures, LaTe
The stabilizing role of itinerant ferromagnetism in inter-granular cohesion in iron
We present a simple, general energy functional for ferromagnetic materials
based upon a local spin density extension to the Stoner theory of itinerant
ferromagnetism. The functional reproduces well available ab initio results and
experimental interfacial energies for grain boundaries in iron. The model shows
that inter-granular cohesion along symmetric tilt boundaries in iron is
dependent upon strong magnetic structure at the interface, illuminates the
mechanisms underlying this structure, and provides a simple explanation for
relaxation of the atomic structure at these boundaries.Comment: In review at Phys. Rev. Lett. Submitted 23 September 1997; revised 16
March 199
Development of a tight-binding potential for bcc-Zr. Application to the study of vibrational properties
We present a tight-binding potential based on the moment expansion of the
density of states, which includes up to the fifth moment. The potential is
fitted to bcc and hcp Zr and it is applied to the computation of vibrational
properties of bcc-Zr. In particular, we compute the isothermal elastic
constants in the temperature range 1200K < T < 2000K by means of standard Monte
Carlo simulation techniques. The agreement with experimental results is
satisfactory, especially in the case of the stability of the lattice with
respect to the shear associated with C'. However, the temperature decrease of
the Cauchy pressure is not reproduced. The T=0K phonon frequencies of bcc-Zr
are also computed. The potential predicts several instabilities of the bcc
structure, and a crossing of the longitudinal and transverse modes in the (001)
direction. This is in agreement with recent ab initio calculations in Sc, Ti,
Hf, and La.Comment: 14 pages, 6 tables, 4 figures, revtex; the kinetic term of the
isothermal elastic constants has been corrected (Eq. (4.1), Table VI and
Figure 4
- …