26 research outputs found

    Hypoxic gene expression in chronic hepatitis B virus infected patients is not observed in state-of-the-art in vitro and mouse infection models

    Get PDF
    Hepatitis B virus (HBV) is the leading cause of hepatocellular carcinoma (HCC) worldwide. The prolyl hydroxylase domain (PHD)-hypoxia inducible factor (HIF) pathway is a key mammalian oxygen sensing pathway and is frequently perturbed by pathological states including infection and inflammation. We discovered a significant upregulation of hypoxia regulated gene transcripts in patients with chronic hepatitis B (CHB) in the absence of liver cirrhosis. We used state-of-the-art in vitro and in vivo HBV infection models to evaluate a role for HBV infection and the viral regulatory protein HBx to drive HIF-signalling. HBx had no significant impact on HIF expression or associated transcriptional activity under normoxic or hypoxic conditions. Furthermore, we found no evidence of hypoxia gene expression in HBV de novo infection, HBV infected human liver chimeric mice or transgenic mice with integrated HBV genome. Collectively, our data show clear evidence of hypoxia gene induction in CHB that is not recapitulated in existing models for acute HBV infection, suggesting a role for inflammatory mediators in promoting hypoxia gene expression

    Oxygen-Independent Stabilization of Hypoxia Inducible Factor (HIF)-1 during RSV Infection

    Get PDF
    BACKGROUND: Hypoxia-inducible factor 1 (HIF)-1alpha is a transcription factor that functions as master regulator of mammalian oxygen homeostasis. In addition, recent studies identified a role for HIF-1alpha as transcriptional regulator during inflammation or infection. Based on studies showing that respiratory syncytial virus (RSV) is among the most potent biological stimuli to induce an inflammatory milieu, we hypothesized a role of HIF-1alpha as transcriptional regulator during infections with RSV. METHODOLOGY, PRINCIPAL FINDINGS: We gained first insight from immunohistocemical studies of RSV-infected human pulmonary epithelia that were stained for HIF-1alpha. These studies revealed that RSV-positive cells also stained for HIF-1alpha, suggesting concomitant HIF-activation during RSV infection. Similarly, Western blot analysis confirmed an approximately 8-fold increase in HIF-1alpha protein 24 h after RSV infection. In contrast, HIF-1alpha activation was abolished utilizing UV-treated RSV. Moreover, HIF-alpha-regulated genes (VEGF, CD73, FN-1, COX-2) were induced with RSV infection of wild-type cells. In contrast, HIF-1alpha dependent gene induction was abolished in pulmonary epithelia following siRNA mediated repression of HIF-1alpha. Measurements of the partial pressure of oxygen in the supernatants of RSV infected epithelia or controls revealed no differences in oxygen content, suggesting that HIF-1alpha activation is not caused by RSV associated hypoxia. Finally, studies of RSV pneumonitis in mice confirmed HIF-alpha-activation in a murine in vivo model. CONCLUSIONS/SIGNIFICANCE: Taking together, these studies suggest hypoxia-independent activation of HIF-1alpha during infection with RSV in vitro and in vivo

    Hypoxia-inducible factors as molecular targets for liver diseases

    Get PDF

    A mutant fibrinogen that is unable to form fibrin can improve renal phenotype in mice with sickle cell anemia

    No full text
    Abstract Sickle cell anemia (SCA) causes nephropathy which may progress to kidney failure. To determine if soluble fibrinogen (FibAEK) can prevent kidney damage in mice with SCA, we performed bone marrow transplantation (BMT) of Berkeley sickle mice into wild‐type fibrinogen (FibWT), and FibAEK mice that bear a germ‐line mutation in fibrinogen Aα chain at thrombin cleavage site which prevents fibrin formation. We found improved albuminuria in SS FibAEK mice compared with SS FibWT mice at 12 months post‐BMT due to the reduced kidney fibrosis, ischemic lesions, and increased survival of podocytes in the glomeruli, but did not improve urine concentrating defect. Therefore, our study clarifies the distinct role of fibrinogen and fibrin in the renal pathology of SCA

    HCV infection induces mitochondrial bioenergetic unbalance: causes and effects.

    Get PDF
    Cells infected by the hepatitis C virus (HCV) are characterized by endoplasmic reticulum stress, deregulation of the calcium homeostasis and unbalance of the oxido-reduction state. In this context, mitochondrial dysfunction proved to be involved and is thought to contribute to the outcome of the HCV-related disease. Here, we propose a temporal sequence of events in the HCV-infected cell whereby the primary alteration consists of a release of Ca(2+) from the endoplasmic reticulum, followed by uptake into mitochondria. This causes successive mitochondrial alterations comprising generation of reactive oxygen and nitrogen species and impairment of the oxidative phosphorylation. A progressive adaptive response results in an enhancement of the glycolytic metabolism sustained by up-regulation of the hypoxia inducible factor. Pathogenetic implications of the model are discussed

    A dual role for hypoxia inducible factor-1α in the hepatitis C virus lifecycle and hepatoma migration

    Get PDF
    Background & AimsHepatitis C virus (HCV) causes progressive liver disease and is a major risk factor for the development of hepatocellular carcinoma (HCC). However, the role of infection in HCC pathogenesis is poorly understood. We investigated the effect(s) of HCV infection and viral glycoprotein expression on hepatoma biology to gain insights into the development of HCV associated HCC.MethodsWe assessed the effect(s) of HCV and viral glycoprotein expression on hepatoma polarity, migration and invasion.ResultsHCV glycoproteins perturb tight and adherens junction protein expression, and increase hepatoma migration and expression of epithelial to mesenchymal transition markers Snail and Twist via stabilizing hypoxia inducible factor-1α (HIF-1α). HIF-1α regulates many genes involved in tumor growth and metastasis, including vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β). Neutralization of both growth factors shows different roles for VEGF and TGFβ in regulating hepatoma polarity and migration, respectively. Importantly, we confirmed these observations in virus infected hepatoma and primary human hepatocytes. Inhibition of HIF-1α reversed the effect(s) of infection and glycoprotein expression on hepatoma permeability and migration and significantly reduced HCV replication, demonstrating a dual role for HIF-1α in the cellular processes that are deregulated in many human cancers and in the viral life cycle.ConclusionsThese data provide new insights into the cancer-promoting effects of HCV infection on HCC migration and offer new approaches for treatment

    Mechanisms of Cellular Uptake, Intracellular Transportation, and Degradation of CIGB-300, a Tat-Conjugated Peptide, in Tumor Cell Lines

    No full text
    CIGB-300 is a cyclic synthetic peptide that induces apoptosis in malignant cells, elicits antitumor activity in cancer animal models, and shows tumor reduction signs when assayed in first-in-human phase I trial in patients with cervical tumors. CIGB-300 impairs phosphorylation by casein kinase 2 through targeting the substrate´s phosphoacceptor domain. CIGB-300 was linked to the cell penetrating peptide Tat to facilitate the delivery into cells. Previously, we showed that CIGB-300 had a differential antiproliferative behavior in different tumor cell lines. In this work, we studied differential antiproliferative behavior in terms of cellular uptake, intracellular transportation, and degradation in tumor cell lines with dissimilar sensitivity to CIGB-300. The internalization of CIGB-300 was studied in different malignant cell lines. We found that the cell membrane heparan sulfate proteoglycans act as main receptors for extracellular CIGB-300 uptake. The most sensitive tumor cell lines showed higher intracellular incorporation of CIGB-300 in comparison to less sensitive cell lines. Furthermore, CIGB-300 uptake is time- and concentration-dependent in all studied cell lines. It was shown that CIGB-300 has the ability to penetrate cells mainly by direct membrane translocation. However, a minor proportion of the peptide uses an energy-dependent endocytic pathway mechanism to gain access into cells. CIGB-300 is internalized and transported into cells preferentially by caveolae-mediated endocytosis. Lysosomes are involved in CIGB-300 degradation; highly sensitive cell lines showed degradation at earlier times compared to low sensitive cells. Altogether, our data suggests a mechanism of internalization, vesicular transportation, and degradation for CIGB-300 in tumor cells.Fil: Benavent Acero, Fernando Rodrigo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Perera Negrin, Yasser. Centro de Ingeniería Genética y Biotecnología. Laboratorio de Oncología Molecular; CubaFil: Alonso, Daniel Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; ArgentinaFil: Perea, Silvio E.. Centro de Ingeniería Genética y Biotecnología. Laboratorio de Oncología Molecular; CubaFil: Gomez, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; ArgentinaFil: Farina, Hernán Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Oncología Molecular; Argentin
    corecore