408 research outputs found

    Oncogenic LMO3 Collaborates with HEN2 to Enhance Neuroblastoma Cell Growth through Transactivation of Mash1

    Get PDF
    Expression of Mash1 is dysregulated in human neuroblastoma. We have also reported that LMO3 (LIM-only protein 3) has an oncogenic potential in collaboration with neuronal transcription factor HEN2 in neuroblastoma. However, the precise molecular mechanisms of its transcriptional regulation remain elusive. Here we found that LMO3 forms a complex with HEN2 and acts as an upstream mediator for transcription of Mash1 in neuroblastoma. The high levels of LMO3 or Mash1 mRNA expression were significantly associated with poor prognosis in 100 primary neuroblastomas. The up-regulation of Mash1 remarkably accelerated the proliferation of SH-SY5Y neuroblastoma cells, while siRNA-mediated knockdown of LMO3 induced inhibition of growth of SH-SY5Y cells in association with a significant down-regulation of Mash1. Additionally, overexpression of both LMO3 and HEN2 induced expression of Mash1, suggesting that they might function as a transcriptional activator for Mash1. Luciferase reporter assay demonstrated that the co-expression of LMO3 and HEN2 attenuates HES1 (a negative regulator for Mash1)-dependent reduction of luciferase activity driven by the Mash1 promoter. Chromatin immunoprecipitation assay revealed that LMO3 and HEN2 reduce the amount of HES1 recruited onto putative HES1-binding sites and E-box within the Mash1 promoter. Furthermore, both LMO3 and HEN2 are physically associated with HES1 by immunoprecipitation assay. Thus, our present results suggest that a transcriptional complex of LMO3 and HEN2 may contribute to the genesis and malignant phenotype of neuroblastoma by inhibiting HES1 which suppresses the transactivation of Mash1

    In Vitro Three‐Dimensional Liver Models for Nanomaterial DNA Damage Assessment

    Get PDF
    Whilst the liver possesses the ability to repair and restore sections of damaged tissue following acute injury, prolonged exposure to engineered nanomaterials (ENM) may induce repetitive injury leading to chronic liver disease. Screening ENM cytotoxicity using 3D liver models has recently been performed, but a significant challenge has been the application of such in vitro models for evaluating ENM associated genotoxicity; a vital component of regulatory human health risk assessment. This review considers the benefits, limitations, and adaptations of specific in vitro approaches to assess DNA damage in the liver, whilst identifying critical advancements required to support a multitude of biochemical endpoints, focusing on nano(geno)toxicology (e.g., secondary genotoxicity, DNA damage, and repair following prolonged or repeated exposures)

    Neurotrophin receptors expression and JNK pathway activation in human astrocytomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurotrophins are growth factors that regulate cell growth, differentiation and apoptosis in the nervous system. Their diverse actions are mediated through two different transmembrane – receptor signaling systems: Trk receptor tyrosine kinases (TrkA, TrkB, TrkC) and p75<sup>NTR </sup>neurotrophin receptor. Trk receptors promote cell survival and differentiation while p75<sup>NTR </sup>induces, in most cases, the activity of JNK-p53-Bax apoptosis pathway or suppresses intracellular survival signaling cascades. Robust Trk activation blocks p75<sup>NTR </sup>-induced apoptosis by suppressing the JNK-p53-Bax pathway. The aim of this exploratory study was to investigate the expression levels of neurotrophin receptors, Trks and p75<sup>NTR</sup>, and the activation of JNK pathway in human astrocytomas and in adjacent non-neoplastic brain tissue.</p> <p>Methods</p> <p>Formalin-fixed paraffin-embedded serial sections from 33 supratentorial astrocytomas (5 diffuse fibrillary astrocytomas, WHO grade II; 6 anaplastic astrocytomas, WHO grade III; 22 glioblastomas multiforme, WHO grade IV) were immunostained following microwave pretreatment. Polyclonal antibodies against TrkA, TrkB, TrkC and monoclonal antibodies against p75<sup>NTR </sup>and phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were used. The labeling index (LI), defined as the percentage of positive (labeled) cells out of the total number of tumor cells counted, was determined.</p> <p>Results</p> <p>Moderate to strong, granular cytoplasmic immunoreactivity for TrkA, TrkB and TrkC receptors was detected in greater than or equal to 10% of tumor cells in the majority of tumors independently of grade; on the contrary, p75<sup>NTR </sup>receptor expression was found in a small percentage of tumor cells (~1%) in some tumors. The endothelium of tumor capillaries showed conspicuous immunoreactivity for TrkB receptor. Trk immunoreactivity seemed to be localized in some neurons and astrocytes in non-neoplastic tissue. Phosphorylated forms of JNK (pJNK) and c-Jun (pc-Jun) were significantly co-expressed in a tumor grade-dependent manner (p < 0.05). Interestingly, a statistically significant (p < 0.05) reverse relationship between Trk receptors LIs and pc-Jun/pJNK LIs was noted in some glioblastomas multiforme.</p> <p>Conclusion</p> <p>In the context of astrocytomas, Trk receptors (TrkA, TrkB, TrkC) expression may promote tumor growth independently of grade. Furthermore, activation of JNK pathway may contribute to progression towards malignancy. Considering the fact that regional tumor heterogeneity may be a limiting factor for immunohistochemical studies, the significance of the reverse relationship between Trk receptors and pc-Jun/pJNK LIs with respect to biological behavior of human astrocytomas requires further evaluation.</p

    Antiproliferative and pro-apoptotic effects afforded by novel Src-kinase inhibitors in human neuroblastoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastoma (NB) is the second most common solid malignancy of childhood that usually undergoes rapid progression with a poor prognosis upon metastasis. The Src-family tyrosine kinases (SFKs) are a group of proteins involved in cancer development and invasiveness that seem to play an important role in the NB carcinogenesis.</p> <p>Methods</p> <p>To determine cell proliferation, the growth rate was evaluated by both MTT test and cells counted. Analysis of DNA content was performed for the evaluation of the cell cycle and apoptosis. To characterize the mechanisms underlying the antiproliferative effects induced by SI 34, a novel pyrazolo-pyrimidine derivative provided with Src inhibitory activity, the involvement of some cellular pathways that are important for cell proliferation and survival was investigated by western blot assays. In particular, the contribution of cyclins, Src and ERK were examined. Finally, experiments of cell adhesion and invasiveness were performed.</p> <p>Results</p> <p>Treatment of SH-SY5Y human NB cells and CHP100 human neuroepithelioma (NE) cultures with three novel pyrazolo[3,4-<it>d</it>]pyrimidine derivatives, namely SI 34, SI 35 and SI 83, inhibits the cell proliferation in a time and concentration-dependent manner. The maximal effect was obtained after 72 hours incubation with SI 34 10 μM. Fluorescence microscopy experiments, flow cytometry analysis and determination of caspase-3 activity by fluorimetric assays showed that SI 34 induced SH-SY5Y apoptosis. Moreover, SI 34 determined cell cycle arrest at the G0/G1 phase, paralleled by a decreased expression of cyclin D1. Furthermore, our data indicate that SI 34 reduces the SH-SY5Y cells adhesion and invasiveness. Evidence that SI 34 inhibits the Src and the ERK-phosphorylation, suggests the mechanism through which it exerts its effects in SH-SY5Y cells.</p> <p>Conclusions</p> <p>Our study shows the ability of this pyrazolo-pyrimidine Src inhibitor in reducing the growth and the invasiveness of human NB cells, suggesting a promising role as novel drug in the treatment of neuroblastoma.</p

    Expression of midkine in the early stage of carcinogenesis in human colorectal cancer

    Get PDF
    It has been suggested that a heparin-binding growth factor, midkine (MK), plays an important role incarcinogenesis because of its frequent overexpression in various malignant tumours. To clarify whether or not MK contributes to theearly stage of carcinogenesis, we examined the status of MK mRNA in 20 adenomas with moderate- and severe-grade dysplasia, 28carcinomas and 28 corresponding normal tissues, by means of Northern blotting. The MK expression level was significantly moreelevated in adenomas than in normal tissues P< 0.001, unpaired Student's t -test). A difference wasalso observed between carcinomas and the corresponding normal tissues P< 0.04, paired Student's t-test). Moreover, MK immunostaining was positive in the adenomas with moderate- and severe-grade dysplasia and in the carcinomas,but not in mild-grade dysplasia or in normal tissues. These findings were in line with those on Western blotting. In three patientswith both adenomas with moderate- or severe-grade dysplasia and carcinomas, elevated MK expression was observed in the neoplasticlesions. This is the first report of the association of elevated MK expression with the early stage of carcinogenesis in humans. © 1999 Cancer Research Campaig

    A protein kinase Cβ inhibitor attenuates multidrug resistance of neuroblastoma cells

    Get PDF
    BACKGROUND: The acquisition of drug resistance is a major reason for poor outcome of neuroblastoma. Protein kinase C (PKC) has been suggested to influence drug resistance in cancer cells. The aim of this study was to elucidate whether inhibition of PKCβ isoforms influences drug-resistance of neuroblastoma cells. METHODS: The effect of the PKCβ inhibitor LY379196 on the growth-suppressing effects of different chemotherapeutics on neuroblastoma cells was analyzed with MTT assays. The effect of LY379196 on the accumulation of [(3)H]vincristine was also investigated RESULTS: The PKCβ inhibitor LY379196 suppressed the growth of three neuroblastoma cell lines. LY379196 also augmented the growth-suppressive effect of doxorubicin, etoposide, paclitaxel, and vincristine, but not of carboplatin. The effect was most marked for vincristine and for the cell-line (SK-N-BE(2)) that was least sensitive to vincristine. No effect was observed on the non-resistant IMR-32 cells. Two other PKC inhibitors, Gö6976 and GF109203X, also enhanced the vincristine effect. The PKC inhibitors caused an increased accumulation of [(3)H]vincristine in SK-N-BE(2) cells. CONCLUSIONS: This indicates that inhibition of PKCβ could attenuate multidrug resistance in neuroblastoma cells by augmenting the levels of natural product anticancer drugs in resistant cells

    Prognostic importance of survivin in breast cancer

    Get PDF
    Survivin is a member of the inhibitor of apoptosis (IAP) family, and is also involved in the regulation of cell division. Survivin is widely expressed in foetal tissues and in human cancers, but generally not in normal adult tissue. This study examined the expression of surviving protein in a series of 293 cases of invasive primary breast carcinoma. Survivin immunoreactivity was assessed using two different polyclonal antibodies, and evaluated semiquantitatively according to the percentage of cells demonstrating distinct nuclear and/or diffuse cytoplasmic staining. Overall, 60% of tumours were positive for survivin: 31% demonstrated nuclear staining only, 13% cytoplasmic only, and 16% of tumour cells demonstrated both nuclear and cytoplasmic staining. Statistical analysis revealed that survivin expression was independent of patient's age, tumour size, histological grade, nodal status, and oestrogen receptor status. In multivariate analysis, nuclear survivin expression was a significant independent prognostic indicator of favourable outcome both in relapse-free and overall survival (P<0.001 and P=0.01, respectively). In conclusion, our results show that survivin is frequently overexpressed in primary breast cancer. Nuclear expression is most common and is an independent prognostic indicator of good prognosis

    Protein Phosphatase Magnesium Dependent 1A (PPM1A) Plays a Role in the Differentiation and Survival Processes of Nerve Cells

    Get PDF
    The serine/threonine phosphatase type 2C (PPM1A) has a broad range of substrates, and its role in regulating stress response is well established. We have investigated the involvement of PPM1A in the survival and differentiation processes of PC6-3 cells, a subclone of the PC12 cell line. This cell line can differentiate into neuron like cells upon exposure to nerve growth factor (NGF). Overexpression of PPM1A in naive PC6-3 cells caused cell cycle arrest at the G2/M phase followed by apoptosis. Interestingly, PPM1A overexpression did not affect fully differentiated cells. Using PPM1A overexpressing cells and PPM1A knockdown cells, we show that this phosphatase affects NGF signaling in PC6-3 cells and is engaged in neurite outgrowth. In addition, the ablation of PPM1A interferes with NGF-induced growth arrest during differentiation of PC6-3 cells
    corecore