256 research outputs found
Mutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repression
Antisense transcription through genic regions is pervasive in most genomes; however, its functional significance is still unclear. We are studying the role of antisense transcripts (COOLAIR) in the cold-induced, epigenetic silencing of Arabidopsis FLOWERING LOCUS C (FLC), a regulator of the transition to reproduction. Here we use single-molecule RNA FISH to address the mechanistic relationship of FLC and COOLAIR transcription at the cellular level. We demonstrate that while sense and antisense transcripts can co-occur in the same cell they are mutually exclusive at individual loci. Cold strongly upregulates COOLAIR transcription in an increased number of cells and through the mutually exclusive relationship facilitates shutdown of sense FLC transcription in cis. COOLAIR transcripts form dense clouds at each locus, acting to influence FLC transcription through changed H3K36me3 dynamics. These results may have general implications for other loci showing both sense and antisense transcription
Influence of Altitude on Tropical Marine Habitat Classification using Fixed-Wing UAV Imagery
Unmanned aerial vehicles (UAVs) are cost-effective remote sensing tools useful for generating very high-resolution (VHR) aerial imagery. Habitat maps generated from UAV imagery are a fundamental component of marine spatial planning, essential for the designation and governance of marine protected areas (MPAs). We investigated whether UAV survey altitude affects habitat classification performance and the classification accuracy of thematic maps from a tropical shallow water environment. We conducted repeated UAV flights at 75, 85, and 110 m, using a fixed-wing UAV on the Turneffe Atoll, Belize. Flights were ground-truthed with snorkel surveys. Images were mosaiced to form orthomosaics and transformed into thematic maps through semi-automatic object-based image analysis (OBIA). Three subset areas (4000 m2, 17000 m2 and 17000 m2) from two cayes on the atoll were selected to investigate the effect of survey altitude. A linear regression demonstrated that for every 1 m increase in survey altitude, there was a ~1% decrease in the overall classification accuracy. A low survey altitude of 75 m produced a higher classification accuracy for thematic maps and increased the representation of mangrove, seagrass, and sand. The variability in classified cover was driven by altitude, although the direction and extent of this relationship was specific to each class. For coral and sea, classified cover decreased with increased altitude. Mangrove classified cover was non-sensitive to altitude changes, demonstrating a lesser need for a consistent survey altitude. Sand and seagrass had a greater sensitivity to altitude, due to classified cover variability between altitudes. Our findings suggest that survey altitude should be minimised when classifying tropical marine environments (coral, seagrass) and, given that most fixed-wing UAVs are restricted to a minimum altitude of 70 m, we recommend an altitude of 75 m. Survey altitude should be a major consideration when targeting habitats with greater sensitivity to altitude variabilit
Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells
February 17, 2011The conversion of lineage-committed cells to induced pluripotent stem cells (iPSCs) by reprogramming is accompanied by a global remodeling of the epigenome[superscript 1, 2, 3, 4, 5], resulting in altered patterns of gene expression[superscript 2, 6, 7, 8, 9]. Here we characterize the transcriptional reorganization of large intergenic non-coding RNAs (lincRNAs)[superscript 10, 11] that occurs upon derivation of human iPSCs and identify numerous lincRNAs whose expression is linked to pluripotency. Among these, we defined ten lincRNAs whose expression was elevated in iPSCs compared with embryonic stem cells, suggesting that their activation may promote the emergence of iPSCs. Supporting this, our results indicate that these lincRNAs are direct targets of key pluripotency transcription factors. Using loss-of-function and gain-of-function approaches, we found that one such lincRNA (lincRNA-RoR) modulates reprogramming, thus providing a first demonstration for critical functions of lincRNAs in the derivation of pluripotent stem cells
A four-gene LincRNA expression signature predicts risk in multiple cohorts of acute myeloid leukemia patients.
Prognostic gene expression signatures have been proposed as clinical tools to clarify therapeutic options in acute myeloid leukemia (AML). However, these signatures rely on measuring large numbers of genes and often perform poorly when applied to independent cohorts or those with older patients. Long intergenic non-coding RNAs (lincRNAs) are emerging as important regulators of cell identity and oncogenesis, but knowledge of their utility as prognostic markers in AML is limited. Here we analyze transcriptomic data from multiple cohorts of clinically annotated AML patients and report that (i) microarrays designed for coding gene expression can be repurposed to yield robust lincRNA expression data, (ii) some lincRNA genes are located in close proximity to hematopoietic coding genes and show strong expression correlations in AML, (iii) lincRNA gene expression patterns distinguish cytogenetic and molecular subtypes of AML, (iv) lincRNA signatures composed of three or four genes are independent predictors of clinical outcome and further dichotomize survival in European Leukemia Net (ELN) risk groups and (v) an analytical tool based on logistic regression analysis of quantitative PCR measurement of four lincRNA genes (LINC4) can be used to determine risk in AML
Identification and Characterization of Novel Genotoxic Stress-Inducible Nuclear Long Noncoding RNAs in Mammalian Cells
Whole transcriptome analyses have revealed a large number of novel transcripts including long and short noncoding RNAs (ncRNAs). Currently, there is great interest in characterizing the functions of the different classes of ncRNAs and their relevance to cellular processes. In particular, nuclear long ncRNAs may be involved in controlling various aspects of biological regulation, such as stress responses. By a combination of bioinformatic and experimental approaches, we identified 25 novel nuclear long ncRNAs from 6,088,565 full-length human cDNA sequences. Some nuclear long ncRNAs were conserved among vertebrates, whereas others were found only among primates. Expression profiling of the nuclear long ncRNAs in human tissues revealed that most were expressed ubiquitously. A subset of the identified nuclear long ncRNAs was induced by the genotoxic agents mitomycin C or doxorubicin, in HeLa Tet-off cells. There were no commonly altered nuclear long ncRNAs between mitomycin C- and doxorubicin-treated cells. These results suggest that distinct sets of nuclear long ncRNAs play roles in cellular defense mechanisms against specific genotoxic agents, and that particular long ncRNAs have the potential to be surrogate indicators of a specific cell stress
Mutations causing medullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by massively parallel sequencing
Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (~1.5–5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.National Institutes of Health (U.S.) (Intramural Research Program)National Human Genome Research Institute (U.S.)Charles University (program UNCE 204011)Charles University (program PRVOUK-P24/LF1/3)Czech Republic. Ministry of Education, Youth, and Sports (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant NT13116-4/2012)Czech Republic. Ministry of Health (grant LH12015)National Institutes of Health (U.S.) (Harvard Digestive Diseases Center, grant DK34854
Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression
Over the past decade, it has become clear that mammalian genomes encode thousands of long non-coding RNAs (lncRNAs), many of which are now implicated in diverse biological processes. Recent work studying the molecular mechanisms of several key examples — including Xist, which orchestrates X chromosome inactivation — has provided new insights into how lncRNAs can control cellular functions by acting in the nucleus. Here we discuss emerging mechanistic insights into how lncRNAs can regulate gene expression by coordinating regulatory proteins, localizing to target loci and shaping three-dimensional (3D) nuclear organization. We explore these principles to highlight biological challenges in gene regulation, in which lncRNAs are well-suited to perform roles that cannot be carried out by DNA elements or protein regulators alone, such as acting as spatial amplifiers of regulatory signals in the nucleus
Long non-coding RNAs and cancer: a new frontier of translational research?
Author manuscriptTiling array and novel sequencing technologies have made available the transcription profile of the entire human genome. However, the extent of transcription and the function of genetic elements that occur outside of protein-coding genes, particularly those involved in disease, are still a matter of debate. In this review, we focus on long non-coding RNAs (lncRNAs) that are involved in cancer. We define lncRNAs and present a cancer-oriented list of lncRNAs, list some tools (for example, public databases) that classify lncRNAs or that scan genome spans of interest to find whether known lncRNAs reside there, and describe some of the functions of lncRNAs and the possible genetic mechanisms that underlie lncRNA expression changes in cancer, as well as current and potential future applications of lncRNA research in the treatment of cancer.RS is supported as a fellow of the TALENTS Programme (7th R&D Framework Programme, Specific Programme: PEOPLE—Marie Curie Actions—COFUND). MIA is supported as a PhD fellow of the FCT (Fundação para a Ciência e Tecnologia), Portugal. GAC is supported as a fellow by The University of Texas MD Anderson Cancer Center Research Trust, as a research scholar by The University of Texas System Regents, and by the Chronic Lymphocytic Leukemia Global Research Foundation. Work in GAC’s laboratory is supported in part by the NIH/ NCI (CA135444); a Department of Defense Breast Cancer Idea Award; Developmental Research Awards from the Breast Cancer, Ovarian Cancer, Brain Cancer, Multiple Myeloma and Leukemia Specialized Programs of Research Excellence (SPORE) grants from the National Institutes of Health; a 2009 Seena Magowitz–Pancreatic Cancer Action Network AACR Pilot Grant; the Laura and John Arnold Foundation and the RGK Foundation
- …