148 research outputs found

    Human exonuclease 1 role in response to UV irradiation

    Get PDF
    DNA damage checkpoints are surveillance mechanisms that monitor the integrity of the genome. Nucleotide excision repair (NER) is a DNA repair mechanism that cells use to remove UV-induced DNA lesions. Previous publication from our laboratory demonstrated that recognition and processing of UV-induced damage by NER is required for proper activation of checkpoint through interactions between NER proteins and checkpoint factors in yeast and human primary fibroblasts. From a two hybrid screening in yeast exonuclease 1 (Exo1) was identified as a 9-1-1 complex interactor. Exo1 is a 5\u2019-3\u2019 exonuclease and 5'-flap-endonuclease with many different roles in DNA metabolism such as meiotic and mitotic recombination, mismatch repair and telomere processing. Characterization of an exo1 yeast deleted strain has shown that this protein is involved in the early steps of UV-induced DNA damage checkpoint. In human cells EXO1 is present as two isoforms named hEXO1a and hEXO1b genetarated by alternative splicing. We are analyzing the role of EXO1 in checkpoint activation in response to UV-C damage in human cells: using siRNA against both a and b isoform of hEXO1 in G1 cells we were able to observe a defect in Chk1 and p53 phosphorylation induced by UV-C irradiation

    TLS Polymerases are involved in processing of EXO1-dependent lesions after UV-induced damage

    Get PDF
    UV light mainly damages DNA by generating CPDs and 6-4PP photoproducts, which are responsible for the pathological effects of sunlight. In a healthy organism, such DNA helix distorting lesions are removed by Nucleotide Excision Repair (NER), a multistep process. Mutations in NER genes cause the onset of severe pathologies. The principal symptom common to all diseases is the strong sensitivity to UV. A high predisposition to tumors development arises in xeroderma pigmentosum (XP) patients, while neurological dysfunctions have been observed in both XP and Cockayne syndrome patients. Upon DNA damage sensing, checkpoints are activated allowing a block or delay of cell cycle progression to ensure repair of the DNA lesions. Intriguingly, while in normal cells UV irradiation activates DNA damage checkpoints in all phases of the cell cycle NER yeast mutant strains and human fibroblasts derived from XP patients fail activate the checkpoint in G1 and G2. Recently, we demonstrated that the checkpoint response to UV light in cells that are not actively replicating their genome requires prior processing of the UV lesions. This involves NER factors but also the Exo1 nuclease. In particular, acting on NER intermediates, Exo1 generates structures containing long tracts of ssDNA in response to UV irradiation. This role of Exo1 is only observed at a subset of problematic lesions that cannot properly repaired by canonic NER. It is these Exo1-induced structures that provide the signal for checkpoint activation both in yeast and human non-replicating cells. The essential role of Exo1 in UV-induced checkpoint activation in vivo has been recently supported by in vitro reconstitution of the activation pathway. What are the problematic lesions that require EXO1 activity is still unknown. We hypothesized that Closely Opposing UV Lesions (COLs) on the two DNA strands could exist and may be a likely candidate. This scenario would require TLS polymerases bypass during repair synthesis step. Therefore, we are investigating Y-family polymerase recruitment at EXO1-positive local UV damage sites (LUDs). We found that Pol h is recruited at both EXO1-positive and EXO1-negative LUDs, while Pol \u3b9 and\uf020Pol \u3ba always co-localize with the nuclease\uf02e Using the CRISPR-Cas9 system, we generated EXO1 knock out cell lines that demonstrated a requirement for EXO1 in Pol \u3b9 and\uf020Pol \u3ba recruitment, consistently with our working model\uf02e Finally, when we silenced TLS polymerases we observed a hyper-activation of UV-induced DNA damage checkpoint, suggesting that EXO1 continues to process UV damaged DNA enlarging the gap and eventually producing DSBs. TLS polymerases, thus are crucial to prevent dangerous situations in non-replicating UV irradiated cells

    Haspin regulates Ras localization to promote Cdc24-driven mitotic depolarization

    Get PDF
    Cell polarization is of paramount importance for proliferation, differentiation, development, and it is altered during carcinogenesis. Polarization is a reversible process controlled by positive and negative feedback loops. How polarized factors are redistributed is not fully understood and is the focus of this work. In Saccharomyces cerevisiae, mutants defective in haspin kinase exhibit stably polarized landmarks and are sensitive to mitotic delays. Here, we report a new critical role for haspin in polarisome dispersion; failure to redistribute polarity factors, in turn, leads to nuclear segregation defects and cell lethality. We identified a mitotic role for GTP-Ras in regulating the local activation of the Cdc42 GTPase, resulting in its dispersal from the bud tip to a homogeneous distribution over the plasma membrane. GTP-Ras2 physically interacts with Cdc24 regulateing its mitotic distribution. Haspin is shown to promote a mitotic shift from a bud tip-favored to a homogenous PM fusion of Ras-containing vesicles. In absence of haspin, active Ras is not redistributed from the bud tip; Cdc24 remains hyperpolarized promoting the activity of Cdc42 at the bud tip, and the polarisome fails to disperse leading to erroneously positioned mitotic spindle, defective nuclear segregation, and cell death after mitotic delays. These findings describe new functions for key factors that modulate cell polarization and mitotic events, critical processes involved in development and tumorigenesis

    The Incorporation of Ribonucleotides Induces Structural and Conformational Changes in DNA

    Get PDF
    Ribonucleotide incorporation is the most common error occurring during DNA replication. Cells have hence developed mechanisms to remove ribonucleotides from the genome and restore its integrity. Indeed, the persistence of ribonucleotides into DNA leads to severe consequences, such as genome instability and replication stress. Thus, it becomes important to understand the effects of ribonucleotides incorporation, starting from their impact on DNA structure and conformation. Here we present a systematic study of the effects of ribonucleotide incorporation into DNA molecules. We have developed, to our knowledge, a new method to efficiently synthesize long DNA molecules (hundreds of basepairs) containing ribonucleotides, which is based on a modified protocol for the polymerase chain reaction. By means of atomic force microscopy, we could therefore investigate the changes, upon ribonucleotide incorporation, of the structural and conformational properties of numerous DNA populations at the single-molecule level. Specifically, we characterized the scaling of the contour length with the number of basepairs and the scaling of the end-to-end distance with the curvilinear distance, the bending angle distribution, and the persistence length. Our results revealed that ribonucleotides affect DNA structure and conformation on scales that go well beyond the typical dimension of the single ribonucleotide. In particular, the presence of ribonucleotides induces a systematic shortening of the molecules, together with a decrease of the persistence length. Such structural changes are also likely to occur in vivo, where they could directly affect the downstream DNA transactions, as well as interfere with protein binding and recognition

    Generation of three iPSC lines from fibroblasts of a patient with Aicardi Goutières Syndrome mutated in TREX1

    Get PDF
    Fibroblasts from a patient with Aicardi Gouti\ue8res Syndrome (AGS) carrying a compound heterozygous mutation in TREX1, were reprogrammed into induced pluripotent stem cells (iPSCs) to establish isogenic clonal stem cell lines: UNIBSi006-A, UNIBSi006-B, and UNIBSi006-C. Cells were transduced using the episomal Sendai viral vectors, containing human OCT4, SOX2, c-MYC and KLF4 transcription factors. The transgene-free iPSC lines showed normal karyotype, expressed pluripotent markers and displayed in vitro differentiation potential toward cells of the three embryonic germ layers

    RNase H activities counteract a toxic effect of Polymerase in cells replicating with depleted dNTP pools

    Get PDF
    RNA:DNA hybrids are transient physiological intermediates that arise during several cellular processes such as DNA replication. In pathological situations, they may stably accumulate and pose a threat to genome integrity. Cellular RNase H activities process these structures to restore the correct DNA:DNA sequence. Yeast cells lacking RNase H are negatively affected by depletion of deoxyribonucleotide pools necessary for DNA replication. Here we show that the translesion synthesis DNA polymerase (Pol ) plays a role in DNA replication under low deoxyribonucleotides condition triggered by hydroxyurea. In particular, the catalytic reaction performed by Pol is detrimental for RNase H deficient cells, causing DNA damage checkpoint activation and G2/M arrest. Moreover, a Pol mutant allele with enhanced ribonucleotide incorporation further exacerbates the sensitivity to hydroxyurea of cells lacking RNase H activities. Our data are compatible with a model in which Pol activity facilitates the formation or stabilization of RNA:DNA hybrids at stalled replication forks. However, in a scenario where RNase H activity fails to restore DNA, these hybrids become highly toxic for cells

    Optimisation of the Schizosaccharomyces pombe urg1 expression system

    Get PDF
    The ability to study protein function in vivo often relies on systems that regulate the presence and absence of the protein of interest. Two limitations for previously described transcriptional control systems that are used to regulate protein expression in fission yeast are: the time taken for inducing conditions to initiate transcription and the ability to achieve very low basal transcription in the "OFF-state". In previous work, we described a Cre recombination-mediated system that allows the rapid and efficient regulation of any gene of interest by the urg1 promoter, which has a dynamic range of approximately 75-fold and which is induced within 30-60 minutes of uracil addition. In this report we describe easy-to-use and versatile modules that can be exploited to significantly tune down P urg1 "OFF-levels" while maintaining an equivalent dynamic range. We also provide plasmids and tools for combining P urg1 transcriptional control with the auxin degron tag to help maintain a null-like phenotype. We demonstrate the utility of this system by improved regulation of HO-dependent site-specific DSB formation, by the regulation Rtf1-dependent replication fork arrest and by controlling Rhp18(Rad18)-dependent post replication repair

    VID22 counteracts G-quadruplex-induced genome instability

    Get PDF
    Genome instability is a condition characterized by the accumulation of genetic alterations and is a hallmark of cancer cells. To uncover new genes and cellular pathways affecting endogenous DNA damage and genome integrity, we exploited a Synthetic Genetic Array (SGA)-based screen in yeast. Among the positive genes, we identified VID22, reported to be involved in DNA double-strand break repair. vid22Δ cells exhibit increased levels of endogenous DNA damage, chronic DNA damage response activation and accumulate DNA aberrations in sequences displaying high probabilities of forming G-quadruplexes (G4-DNA). If not resolved, these DNA secondary structures can block the progression of both DNA and RNA polymerases and correlate with chromosome fragile sites. Vid22 binds to and protects DNA at G4-containing regions both in vitro and in vivo. Loss of VID22 causes an increase in gross chromosomal rearrangement (GCR) events dependent on G-quadruplex forming sequences. Moreover, the absence of Vid22 causes defects in the correct maintenance of G4-DNA rich elements, such as telomeres and mtDNA, and hypersensitivity to the G4-stabilizing ligand TMPyP4. We thus propose that Vid22 is directly involved in genome integrity maintenance as a novel regulator of G4 metabolism

    The ribonuclease DIS3 promotes let-7 miRNA maturation by degrading the pluripotency factor LIN28B mRNA

    Get PDF
    Multiple myeloma, the second most frequent hematologic tumor after lymphomas, is an incurable cancer. Recent sequencing efforts have identified the ribonuclease DIS3 as one of the most frequently mutated genes in this disease. DIS3 represents the catalytic subunit of the exosome, a macromolecular complex central to the processing, maturation and surveillance of various RNAs. miRNAs are an evolutionarily conserved class of small noncoding RNAs, regulating gene expression at post-transcriptional level. Ribonucleases, including Drosha, Dicer and XRN2, are involved in the processing and stability of miRNAs. However, the role of DIS3 on the regulation of miRNAs remains largely unknown. Here we found that DIS3 regulates the levels of the tumor suppressor let-7 miRNAs without affecting other miRNA families. DIS3 facilitates the maturation of let-7 miRNAs by reducing in the cytoplasm the RNA stability of the pluripotency factor LIN28B, a inhibitor of let-7 processing. DIS3 inactivation, through the increase of LIN28B and the reduction of mature let-7, enhances the translation of let-7 targets such as MYC and RAS leading to enhanced tumorigenesis. Our study establishes that the ribonuclease DIS3, targeting LIN28B, sustains the maturation of let-7 miRNAs and suggests the increased translation of critical oncogenes as one of the biological outcomes of DIS3 inactivation

    VID22 counteracts G-quadruplex-induced genome instability

    Get PDF
    Genome instability is a condition characterized by the accumulation of genetic alterations and is a hallmark of cancer cells. To uncover new genes and cellular pathways affecting endogenous DNA damage and genome integrity, we exploited a Synthetic Genetic Array (SGA)-based screen in yeast. Among the positive genes, we identified VID22, reported to be involved in DNA double-strand break repair. vid22Δ cells exhibit increased levels of endogenous DNA damage, chronic DNA damage response activation and accumulate DNA aberrations in sequences displaying high probabilities of forming G-quadruplexes (G4-DNA). If not resolved, these DNA secondary structures can block the progression of both DNA and RNA polymerases and correlate with chromosome fragile sites. Vid22 binds to and protects DNA at G4-containing regions both in vitro and in vivo. Loss of VID22 causes an increase in gross chromosomal rearrangement (GCR) events dependent on G-quadruplex forming sequences. Moreover, the absence of Vid22 causes defects in the correct maintenance of G4-DNA rich elements, such as telomeres and mtDNA, and hypersensitivity to the G4-stabilizing ligand TMPyP4. We thus propose that Vid22 is directly involved in genome integrity maintenance as a novel regulator of G4 metabolism.Associazione Italiana per la Ricerca sul Cancro (AIRC) [15631, 21806 to M.M.F.]; MIUR [PRIN 2015-2015SJLMB9; PRIN 2017-2017KSZZJW to M.M.F.]; Telethon [GGP15227 to M.M.F.]; F.L. was supported by the University of Milano: ‘‘Piano di Sviluppo dell’Ateneo per la Ricerca. Linea B: Supporto per i Giovani Ricercatori’’; M.C.B. was supported by Fondazione Veronesi; Research at the laboratory of A.A. was funded by the Spanish Ministry of Economy and Competitiveness [BFU2016-75058-P]; B.G.G. was funded by the Spanish Association Against Cancer; MIUR [PRIN2017-2017Z55KC to T.B.]; M.C., D.S.H. are supported by MIUR [PRIN 2017] and CNRbiomics [PIR01_00017]; H2020 Projects ELIXIR-EXCELERATE, EOSC-Life, EOSC-Pillar and Elixir-IIB; G.W.B. was supported by the Canadian Institutes of Health Research[FDN-159913]. Funding for open access charge: Associazione Italiana per la Ricerca sul Cancro (AIRC) [21806]
    • …
    corecore