283 research outputs found

    Spatial coefficient of variation of arterial spin labeling MRI as a cerebrovascular correlate of carotid occlusive disease

    Get PDF
    Clinical interpretation of arterial spin labeling (ASL) perfusion MRI in cerebrovascular disease remains challenging mainly because of the method’s sensitivity to concomitant contributions from both intravascular and tissue compartments. While acquisition of multi-delay images can differentiate between the two contributions, the prolonged acquisition is prone to artifacts and not practical for clinical applications. Here, the utility of the spatial coefficient of variation (sCoV) of a single-delay ASL image as a marker of the intravascular contribution was evaluated by testing the hypothesis that sCoV can detect the effects of differences in label arrival times between ipsi- and contra-lateral hemispheres even in the absence of a hemispheric difference in CBF. Hemispheric lateralization values for sCoV and CBF were computed from ASL images acquired on 28 patients (age 73.9 ± 10.2 years, 8 women) with asymptomatic unilateral carotid occlusion. The results showed that sCoV lateralization predicted the occluded side with 96.4% sensitivity, missing only 1 patient. In contrast, the sensitivity of the CBF lateralization was 71.4%, with 8 patients showing no difference in CBF between hemispheres. The findings demonstrate the potential clinical utility of sCoV as a cerebrovascular correlate of large vessel disease. Using sCoV in tandem with CBF, vascular information can be obtained in image processing without the need for additional scan-time

    MRI-based parameter inference for cerebral perfusion modelling in health and ischaemic stroke

    Get PDF
    Cerebral perfusion modelling is a promising tool to predict the impact of acute ischaemic stroke treatments on the spatial distribution of cerebral blood flow (CBF) in the human brain. To estimate treatment efficacy based on CBF, perfusion simulations need to become suitable for group-level investigations and thus account for physiological variability between individuals. However, computational perfusion modelling to date has been restricted to a few patient-specific cases. This study set out to establish automated parameter inference for perfusion modelling based on neuroimaging data and thus enable CBF simulations of groups. Magnetic resonance imaging (MRI) data from 75 healthy senior adults were utilised. Brain geometries were computed from healthy reference subjects’ T1-weighted MRI. Haemodynamic model parameters were determined from spatial CBF maps measured by arterial spin labelling (ASL) perfusion MRI. Thereafter, perfusion simulations were conducted in 75 healthy cases followed by 150 acute ischaemic stroke cases representing an occlusion and CBF cessation in the left and right middle cerebral arteries. The anatomical fitness of the brain geometries was evaluated by comparing the simulated grey (GM) and white matter (WM) volumes to measurements in healthy reference subjects. Strong positive correlations were found in both tissue types (GM: Pearson’s r 0.74, P<0.001; WM: Pearson’s r 0.84, P<0.001). Haemodynamic parameter tuning was verified by comparing the total volumetric blood flow rate to the brain in healthy reference subjects and simulations (Pearson’s r 0.89, P<0.001). In acute ischaemic stroke cases, the simulated infarct volume using a perfusion-based estimate was 197±25 ml. Computational predictions were in agreement with anatomical and haemodynamic values from the literature concerning T1-weighted, T2-weighted, and phase-contrast MRI measurements in healthy scenarios and acute ischaemic stroke cases. The acute stroke simulations did not capture small infarcts (left tail of the distribution), which could be explained by neglected compensatory mechanisms, e.g. collaterals. The proposed parameter inference method provides a foundation for group-level CBF simulations and for in silico clinical stroke trials which could assist in medical device and drug development.European Union funding: 77707

    Late-life brain perfusion after prenatal famine exposure

    Get PDF
    Early nutritional deprivation may cause irreversible damage to the brain and seems to affect cognitive function in older age. We investigated whether prenatal undernutrition was associated with brain perfusion differences in older age. We acquired Arterial spin labeling scans in 118 Dutch famine birth cohort members. Using linear regression analyses, cerebral blood flow was compared between exposed and unexposed groups in gray matter (GM) and white matter (WM), perfusion territories, the neurodegeneration-related regions anterior and posterior cingulate cortex and precuneus. Furthermore, we compared the GM/WM ratio and the spatial coefficient of variation as a proxy of overall cerebrovascular health. The WM arterial spin labeling signal and the GM/WM ratio were significantly lower and higher, respectively, among exposed participants (−2.5 mL/100 g/min [95% CI: −4.3 to −0.8; p = 0.01] and 0.48 [0.19 to 0.76; p = 0.002], respectively). Exposed men had lower cerebral blood flow in anterior and posterior cingulate cortices (−8.0 mL/100 g/min [−15.1 to −0.9; p = 0.03]; −11.4 mL/100 g/min [−19.6 to −3.2; p = 0.02]) and higher spatial coefficient of variation (0.05 [0.00 to 0.09; p = 0.05]). The latter seemed largely mediated by higher 2h-glucose levels at age 50. Our findings suggest that prenatal undernutrition affects brain perfusion parameters providing further evidence for life-long effects of undernutrition during early brain development

    Effects of a preconception lifestyle intervention in obese infertile women on diet and physical activity; : A secondary analysis of a randomized controlled trial

    Get PDF
    Funding: The LIFEstyle study was funded by ZonMw, the Dutch Organization for Health Research and Development, grant number: 50- 50110-96-518. TvE is supported by grants from the Dutch Heart Foundation (2013T085) and the European Commission (Horizon2020 project 633595 DynaHealth). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscriptPeer reviewedPublisher PD

    ISMRM Open Science Initiative for Perfusion Imaging (OSIPI): ASL pipeline inventory

    Get PDF
    Purpose: To create an inventory of image processing pipelines of arterial spin labeling (ASL) and list their main features, and to evaluate the capability, flexibility, and ease of use of publicly available pipelines to guide novice ASL users in selecting their optimal pipeline. Methods: Developers self-assessed their pipelines using a questionnaire developed by the Task Force 1.1 of the ISMRM Open Science Initiative for Perfusion Imaging. Additionally, each publicly available pipeline was evaluated by two independent testers with basic ASL experience using a scoring system created for this purpose. Results: The developers of 21 pipelines filled the questionnaire. Most pipelines are free for noncommercial use (n = 18) and work with the standard NIfTI (Neuroimaging Informatics Technology Initiative) data format (n = 15). All pipelines can process standard 3D single postlabeling delay pseudo-continuous ASL images and primarily differ in their support of advanced sequences and features. The publicly available pipelines (n = 9) were included in the independent testing, all of them being free for noncommercial use. The pipelines, in general, provided a trade-off between ease of use and flexibility for configuring advanced processing options. Conclusion: Although most ASL pipelines can process the common ASL data types, only some (namely, ASLPrep, ASLtbx, BASIL/Quantiphyse, ExploreASL, and MRICloud) are well-documented, publicly available, support multiple ASL types, have a user-friendly interface, and can provide a useful starting point for ASL processing. The choice of an optimal pipeline should be driven by specific data to be processed and user experience, and can be guided by the information provided in this ASL inventory

    A systematic review on the use of quantitative imaging to detect cancer therapy adverse effects in normal-appearing brain tissue

    Get PDF
    Cancer therapy for both central nervous system (CNS) and non-CNS tumors has been previously associated with transient and long-term cognitive deterioration, commonly referred to as ‘chemo fog’. This therapy-related damage to otherwise normal-appearing brain tissue is reported using post-mortem neuropathological analysis. Although the literature on monitoring therapy effects on structural magnetic resonance imaging (MRI) is well established, such macroscopic structural changes appear relatively late and irreversible. Early quantitative MRI biomarkers of therapy-induced damage would potentially permit taking these treatment side effects into account, paving the way towards a more personalized treatment planning. This systematic review (PROSPERO number 224196) provides an overview of quantitative tomographic imaging methods, potentially identifying the adverse side effects of cancer therapy in normal-appearing brain tissue. Seventy studies were obtained from the MEDLINE and Web of Science databases. Studies reporting changes in normal-appearing brain tissue using MRI, PET, or SPECT quantitative biomarkers, related to radio-, chemo-, immuno-, or hormone therapy for any kind of solid, cystic, or liquid tumor were included. The main findings of the reviewed studies were summarized, providing also the risk of bias of each study assessed using a modified QUADAS-2 tool. For each imaging method, this review provides the methodological background, and the benefits and shortcomings of each method from the imaging perspective. Finally, a set of recommendations is proposed to support future research

    Advanced intraoperative MRI in pediatric brain tumor surgery

    Get PDF
    Introduction: In the pediatric brain tumor surgery setting, intraoperative MRI (ioMRI) provides “real-time” imaging, allowing for evaluation of the extent of resection and detection of complications. The use of advanced MRI sequences could potentially provide additional physiological information that may aid in the preservation of healthy brain regions. This review aims to determine the added value of advanced imaging in ioMRI for pediatric brain tumor surgery compared to conventional imaging.Methods: Our systematic literature search identified relevant articles on PubMed using keywords associated with pediatrics, ioMRI, and brain tumors. The literature search was extended using the snowball technique to gather more information on advanced MRI techniques, their technical background, their use in adult ioMRI, and their use in routine pediatric brain tumor care.Results: The available literature was sparse and demonstrated that advanced sequences were used to reconstruct fibers to prevent damage to important structures, provide information on relative cerebral blood flow or abnormal metabolites, or to indicate the onset of hemorrhage or ischemic infarcts. The explorative literature search revealed developments within each advanced MRI field, such as multi-shell diffusion MRI, arterial spin labeling, and amide-proton transfer-weighted imaging, that have been studied in adult ioMRI but have not yet been applied in pediatrics. These techniques could have the potential to provide more accurate fiber tractography, information on intraoperative cerebral perfusion, and to match gadolinium-based T1w images without using a contrast agent.Conclusion: The potential added value of advanced MRI in the intraoperative setting for pediatric brain tumors is to prevent damage to important structures, to provide additional physiological or metabolic information, or to indicate the onset of postoperative changes. Current developments within various advanced ioMRI sequences are promising with regard to providing in-depth tissue information

    Investigating the origin and evolution of cerebral small vessel disease: The RUN DMC - InTENse study

    Get PDF
    Background Neuroimaging in older adults commonly reveals signs of cerebral small vessel disease (SVD). SVD is believed to be caused by chronic hypoperfusion based on animal models and longitudinal studies with inter-scan intervals of years. Recent imaging evidence, however, suggests a role for acute ischaemia, as indicated by incidental diffusion-weighted imaging lesions (DWI+ lesions), in the origin of SVD. Furthermore, it becomes increasingly recognised that focal SVD lesions likely affect the structure and function of brain areas remote from the original SVD lesion. However, the temporal dynamics of these events are largely unknown. Aims (1) To investigate the monthly incidence of DWI+ lesions in subjects with SVD;(2) to assess to which extent these lesions explain progression of SVD imaging markers;(3) to investigate their effects on cortical thickness, structural and functional connectivity and cognitive and motor performance;and (4) to investigate the potential role of the innate immune system in the pathophysiology of SVD. Design/methods The RUN DMC - InTENse study is a longitudinal observational study among 54 non-demented RUN DMC survivors with mild to severe SVD and no other presumed cause of ischaemia. We performed MRI assessments monthly during 10 consecutive months (totalling up to 10 scans per subject), complemented with clinical, motor and cognitive examinations. Discussion Our study will provide a better understanding of the role of DWI+ lesions in the pathophysiology of SVD and will further unravel the structural and functional consequences and clinical importance of these lesions, with an unprecedented temporal resolution. Understanding the role of acute, potentially ischaemic, processes in SVD may provide new strategies for therapies

    Early-stage differentiation between presenile Alzheimer’s disease and frontotemporal dementia using arterial spin labeling MRI

    Get PDF
    Objective: To investigate arterial spin labeling (ASL)-MRI for the early diagnosis of and differentiation between the two most common types of presenile dementia: Alzheimer’s disease (AD) and frontotemporal dementia (FTD), and for distinguishing age-related from pathological perfusion changes. Methods: Thirteen AD and 19 FTD patients, and 25 age-matched older and 22 younger controls underwent 3D pseudo-continuous ASL-MRI at 3 T. Gray matter (GM) volume and cerebral blood flow (CBF), corrected for partial volume effects, were quantified in the entire supratentorial cortex and in 10 GM regions. Sensitivity, specificity and diagnostic performance were evaluated in regions showing significant CBF differences between patient groups or between patients and older controls. Results: AD compared with FTD patients had hypoperfusion in the posterior cingulate cortex,
    corecore