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Abstract
Objective To investigate arterial spin labeling (ASL)-MRI for
the early diagnosis of and differentiation between the two most
common types of presenile dementia: Alzheimer’s disease
(AD) and frontotemporal dementia (FTD), and for
distinguishing age-related from pathological perfusion changes.
Methods Thirteen AD and 19 FTD patients, and 25 age-
matched older and 22 younger controls underwent 3D
pseudo-continuous ASL-MRI at 3 T. Gray matter (GM) vol-
ume and cerebral blood flow (CBF), corrected for partial vol-
ume effects, were quantified in the entire supratentorial cortex
and in 10 GM regions. Sensitivity, specificity and diagnostic
performance were evaluated in regions showing significant
CBF differences between patient groups or between patients
and older controls.
Results AD compared with FTD patients had hypoperfusion
in the posterior cingulate cortex, differentiating these with a
diagnostic performance of 74 %. Compared to older controls,
FTD patients showed hypoperfusion in the anterior cingulate
cortex, whereas AD patients showed a more widespread

regional hypoperfusion as well as atrophy. Regional atrophy
was not different between AD and FTD. Diagnostic perfor-
mance of ASL to differentiate AD or FTD from controls was
good (78-85 %). Older controls showed global hypoperfusion
compared to young controls.
Conclusion ASL-MRI contributes to early diagnosis of and
differentiation between presenile AD and FTD.
Key Points
• ASL-MRI facilitates differentiation of early Alzheimer’s dis-
ease and frontotemporal dementia.

• Posterior cingulate perfusion is lower in Alzheimer’s disease
than frontotemporal dementia.

• Compared to controls, Alzheimer’s disease patients show
hypoperfusion in multiple regions.

• Compared to controls, frontotemporal dementia patients
show focal anterior cingulate hypoperfusion.

• Global decreased perfusion in older adults differs from hy-
poperfusion in dementia.
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Abbreviations
ACC anterior cingulate cortex
AD Alzheimer’s disease
ANOVA analysis of variance
ASL arterial spin labeling
AUC area under the curve
CBF cerebral blood flow
FDG-PET fluorodeoxyglucose-positron emission

tomography
FN false negative
FOV field of view
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FP false positive
FTD frontotemporal dementia
FSE fast spin echo
GM gray matter
MMSE Mini Mental State Examination
MRI magnetic resonance imaging
MTL medial temporal lobe
PCC posterior cingulate cortex
PD proton density
PFC prefrontal cortex
PPA primary progressive aphasia
PV partial volume
PWI perfusion-weighted image
ROC Receiver Operating Characteristic
ROI region of interest
T1w T1 weighted
TE echo time
TR repetition time

Introduction

Although less prevalent, presenile dementia (age of onset
≤65 years) comprises a substantial subset of dementia patients
[1]. Compared to late-onset dementia, it more often has an
atypical presentation and more progressive disease course.
Early diagnosis of presenile dementia remains difficult as dif-
ferent etiologies are hard to distinguish. Presenile Alzheimer’s
disease (AD) more often has a non-amnestic presentation than
late-onset AD [2]. Additionally, non-neurological causes of
cognitive dysfunction are more prevalent in younger patients
and may mimic neurodegenerative disorders, particularly ob-
scuring differentiation between psychiatric disease and
frontotemporal dementia (FTD) [3]. Another large subset of
young patients presents with primary progressive aphasia
(PPA), in which the underlying pathology – AD or FTD – is
often unclear [4].

Conventional magnetic resonance imaging (MRI) often
shows distinctive brain atrophy only in later stages AD and
FTD [5]. Early diagnosis requires techniques that detect early
brain changes, such as fluorodeoxyglucose-positron emission
t omog r aphy (FDG-PET) . FDG-PET v i sua l i z e s
hypometabolism in temporo-parietal regions, posterior cingu-
late, and precuneus in AD, while FTD affects the prefrontal
cortex (PFC), anterior cingulate cortex (ACC) and anterior
temporal cortex [6]. Arterial spin labeling (ASL)-MRI, mea-
suring brain perfusion, has been proposed as an alternative as
it is noninvasive and easily added to routine diagnostic MRI
protocols, whereas FDG-PET has limited availability and rel-
atively high costs [7]. Hypoperfusion measured with ASL is
consistent with PET in advanced AD and FTD, indicating that
ASL could contribute to differential diagnosis [8, 9]. The use
of ASL in the earliest stages of dementia is being increasingly

studied [10, 11], but little is known about ASL findings in the
early stage of presenile dementia, when diagnosis is often still
uncertain. To reliably assess regional cerebral blood flow
(CBF) changes in such patients, we also need to determine
normal - regional - CBF variability, as this is substantial in
healthy young adults [12].

The aim of this study was to investigate ASL-MRI for the
early diagnosis of and differentiation between the two most
common types of presenile dementia: AD and FTD [2]. We
also investigated age-related CBF changes to distinguish path-
ological from physiological changes in regional perfusion.

Methods

Participants

Newly presenting patients visiting our outpatientmemory clinic
between January 2011 and September 2013, aged 45 to
70 years, and with a Mini Mental State Examination (MMSE)
score≥20 (indicating mild dementia) were prospectively con-
sidered for inclusion. All patients underwent neurological and
neuropsychological examination as part of their routine diag-
nostic work up. We consecutively included patients with a di-
agnosis of possible or probable AD or FTD. In addition, pa-
tients were included with PPA in which the underlying
aetiology can be either AD or FTD. The reference standard
was a nosological diagnosis of AD or FTD by consensus ac-
cording to the McKhann [13] and Rascovsky [14] criteria, or
AD or FTD underlying PPA [4]. Diagnosis was established
either at baseline (initial visit), or after follow-up when diagno-
sis at baseline was uncertain, and verified independently by two
experienced neurologists. Conventional structural MRI was
assessed as part of the diagnostic process and simultaneously
assessed for exclusion criteria, ASL-MRIwas not. Patients with
psychiatric or neurological disorders other than dementia were
excluded. Other exclusion criteria were normal pressure hydro-
cephalus, Huntington’s disease, cerebral vascular disease, alco-
hol abuse, brain tumour, epilepsy or encephalitis.

Healthy young (18 to 40 years) and older (45 to 70 years)
controls were recruited through advertisement, and older con-
trols also from their patient peers. Data from these young
participants were previously reported in a reproducibility
study of ASL [15]. Both control groups were matched for
gender, and older controls for age with the patients. A re-
searcher screened all participants, who were included only
when there was no history of neurological or psychiatric dis-
ease, and no contraindications for MRI. Older controls were
administered the MMSE to assess global cognitive
functioning.

The study was approved by the local medical ethics com-
mittee. All participants gave written informed consent.
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Image acquisition

All participants were examined at 3 T (Discovery MR750
system, GE Healthcare, USA). Perfusion was measured with
state-of-the-art [16] whole brain 3D pseudo-continuous ASL
(p-CASL) (background-suppressed, post-labeling delay
1525 ms, labeling duration 1450 ms, echo time (TE)
10.5 ms, repetition time (TR) 4632 ms, interleaved FSE
stack-of-spiral readout of 512 sampling points on eight spirals,
isotropic resolution 3.3 mm in a field of view (FOV) of
240 mm, 36 axial slices, number of excitations 3, acquisition
time 4.29min). The labeling plane was positioned 9 cm below
the anterior commissure-posterior commissure line. A high
resolution 3-D fast spoiled gradient-echo T1-weighted (T1w)
image (FOV 240 mm, TR/TE/inversion time 7.9/3.06/450ms,
ASSET factor 2, matrix 240*240, and slice thickness 1 mm,
acquisition time 4.41 min) was acquired for anatomical
reference.

Image data processing

The data were processed according to methods described pre-
viously [17] to obtain partial volume effect corrected CBF
values from gray matter (GM) only.

Tissue segmentation

Gray matter (GM), white matter, and cerebrospinal fluid maps
were obtained from the T1w image using the unified tissue
segmentation method [18] of SPM8 (Statistical Parametric
Mapping, London, UK). GM volumes were computed from
the GM map. CBF was analyzed in GM only.

ASL post-processing

The ASL imaging dataset consisted of two images, a
perfusion-weighted image (PWI) and a proton density image
(PD), that were required for CBF calculation [16]. CBF maps
from representative patients are shown in Figure 1. The GM
map derived from the T1w image was rigidly registered with
the PD image for each participant (Elastix registration soft-
ware [19]). Then GM maps were transformed to ASL image
space to enable partial volume (PV) correction. PV effects
were corrected in PWI and PD images using local linear re-
gression within a 3D kernel based on tissue maps [20]. The
PV-corrected ASL images were quantified as CBFmaps using
the single-compartment model [16] as implemented by the
scanner manufacturer. Finally CBF maps were transformed
to T1w image space for further analysis.

Fig. 1 Cerebral blood flow (CBF
in ml/100 g GM/min) maps for a
representative AD (left column)
and FTD patient (right column).
The top row shows their
skull-stripped CBF map, the
bottom row shows their
colour-coded CBF maps overlaid
on the structural T1w images.
Hypoperfusion is prominent in
the PCC (thick arrows) in AD
compared to FTD. Also note the
global and more extensive
hypoperfusion in AD compared
to the focal hypoperfusion in the
ACC in FTD (thin arrows). CBF:
cerebral blood flow; AD:
Alzheimer’s disease; FTD:
frontotemporal dementia; T1w:
T1 weighted; PCC: posterior
cingulate cortex; ACC: anterior
cingulate cortex
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ROI labeling

For each participant, regions of interest (ROIs) were
defined using a multi-atlas approach. This involved the
registration of 30 labeled T1w images, each containing
83 ROIs [21, 22], to the participants’ T1w images. The
labels of the 30 atlas images were fused using a major-
ity voting algorithm to obtain a final ROI labeling [23].
Registration to the participants’ nonuniformity-corrected
T1w images [24] were performed with a rigid, affine,
and a non-rigid B-spline transformation model consecu-
tively. For this registration, both the participants’ and
the labeled T1w images were masked using the Brain
Extraction Tool [25].

Region selection

CBF was assessed per participant globally in the entire
supratentorial cortex, and regionally in ten predefined cortical
regions relevant for dementia, based on previously reported
PET-findings in AD and FTD [26–28] (Table 1). Mean GM
CBF and volumes in these regions were extracted for the left
and right hemisphere separately and subsequently reported as
an average of the bilateral regions. GMvolumes were reported
as percentage of the total intracranial volume (% ICV).

Data analysis

Gender differences across patient and control groups were
examined using chi-square tests (p<0.05). One-way analysis
of variance (ANOVA) with Bonferroni correction (p<0.05)
was used to examine age and MMSE differences across AD
and FTD patients and older controls; and to compare global
and regional GM CBF and volume across the patient and
control groups. Variation within and between groups was vi-
sualized with a boxplot.

Sensitivity and specificity of regional CBF were evaluated
for both patient groups using Receiver Operating Characteris-
tic (ROC) analysis. We examined regions known to be affect-
ed in dementia that showed significant differences between
FTD or AD patients and older controls. Regions significantly
different between FTD and AD patients were selected to in-
vestigate their performance in differentiating the patient
groups. Diagnostic performance was expressed by areas under
the curve (AUC) with 95 % confidence intervals. For the
regions with the highest AUCs, optimal cut-off points were
determined to discriminate between the examined groups by
locating the cut-off point where the distance from maximum
sensitivity and specificity was minimal. Distance was calcu-
lated for each observed cut-off point using the equation:
distance=√[(1 – sensitivity)2+(1 – specificity)2]. Based on

Table 1 Selected regions of
interest (ROIs) ROI (literature) Anatomical region [21, 22]

Regions affected Medial temporal lobe (MTL) Hippocampus

Gyri parahippocampalis et ambiens

Remainder of temporal lobe Anterior temporal lobe, medial part

Anterior temporal lobe, lateral part

Superior temporal gyrus, central part

Medial and inferior temporal gyri

Posterior temporal lobe

Superior temporal gyrus

Precuneus Superior parietal gyrus

Posterior cingulate cortex (PCC) Cingulate gyrus, posterior part

Thalamus Thalamus

Anterior cingulate cortex (ACC) Cingulate gyrus, anterior (supragenual) part

Subgenual anterior cingulate gyrus

Presubgenual anterior cingulate gyrus

Medial prefrontal cortex (medial PFC) Straight gyrus (gyrus rectus)

Superior frontal gyrus

Medial orbital gyrus

Posterior orbital gyrus

Regions initially
unaffected

Precentral gyrus Precentral gyrus

Occipital lobe Lateral remainder of occipital lobe

Calcarine cortex Lingual gyrus

Cuneus

Reported regions were matched as closely as possible to our anatomically defined ROIs [21, 22]
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these cut-off points, false positives (FPs) and false negatives
(FNs) were determined to explore whether age, gender,
MMSE or PPA variant affected misclassification.

Statistical analyses were performed in IBM SPSS Statis-
tics, version 20.0 (New York, USA).

Results

Participant characteristics

One hundred participants were included in our study: 53 de-
mentia patients, 22 healthy young adult and 25 healthy older
participants (Table 2). Post hoc, 21 of the 53 included patients
were excluded due to diagnoses other than AD or FTD during
follow-up (7), lack of progression (4), low data quality (4), or
because of incomplete imaging data (6). Median follow-up
was 1.2 years (range 2 weeks – 2.8 years).

Gender was not different across groups (χ2 (3, n=79)=
1.822, p>.05). Age was not different between AD and FTD
patients and older controls (F(2,54)=0.886, p>.05). MMSE
was different across the patient groups and older controls (F(2,
53)=13.476, p<.05): both patient groups had lower scores
compared to older controls, but not compared to each other
(Table 2). Due to language deficits, two patients with PPA had
MMSE scores of <20. Their full neuropsychological exami-
nation indicated only moderate impairment in all cognitive
domains except for language, affecting the MMSE score.
Their data were therefore retained in the analysis.

Global perfusion and volume changes

Mean CBF of the supratentorial cortex (Table 3, Fig. 2) was
not different between AD and FTD. Compared with older
controls, global perfusion was lower in AD, but not in FTD.
Older controls showed lower global perfusion than young
controls. Mean GM volume was not different between AD
and FTD, but was lower in both AD and FTD compared to
controls (Table 3).

Regional perfusion and volume changes

Changes related to dementia

Of the regions affected by dementia, the PCC showed lower
CBF in AD than FTD (Table 3, Fig. 2). Compared to older
controls, CBF was lower in all these regions in AD, but only
in the ACC in FTD. GM volume was not different between
AD and FTD, but was lower in AD compared to controls in all
regions affected in dementia except the ACC and medial PFC.
FTD had lower volumes in all regions except the thalamus
(Table 3).

Of the regions initially unaffected by dementia, CBF in and
volume of the precentral gyrus showed differences neither
between AD and FTD nor between each of the patient groups
and older controls. Mean CBF and GM volume in the occip-
ital lobe and calcarine cortex was lower in AD than in older
controls, but did not differ between FTD and controls.

Age-related changes

Mean CBF in all ROIs was lower in older than in young
controls (Table 3, Fig. 2). Mean GM volumes (Table 3) were
lower in all ROIs except the medial temporal lobe (MTL)
(Table 3). In both control groups, CBF was relatively highest
in the PCC and lowest in the occipital lobe.

Diagnostic performance of ASL in dementia

CBF was lower in AD than FTD in the PCC (Table 3), in
which ROC analysis yielded an AUC of 0.741 (Table 4).
The optimal cut-off point differentiated AD from FTD with
69 % sensitivity and 68 % specificity (Fig. 3a).

As all regions showed lower CBF in AD than controls
(Table 3), these were all examined (Table 4). The precuneus
performed best (AUC: 0.849) and differentiated AD patients
from controls with 77 % sensitivity and 76 % specificity
(Fig. 3b).

FTD had lower CBF than controls in the ACC (Table 3), in
which ROC analysis yielded an AUC of 0.775 (Table 4) and

Table 2 Participant
characteristics AD FTD Older controls Young controls

N (male, female) 13 (8, 5) 19 (11, 8) 25 (13, 12) 22 (9, 13)

Mean age±SD in years 62.2±5.46 63.0±4.46 60.9±5.85 22.1±2.12

Mean MMSE±SD 25.3±2.29 25.8±3.88 29.2±0.98a N/A

Probable cause of dementia 11 AD

2 PPA-AD

8 FTD

11 PPA-FTD

N/A N/A

a based on 24 healthy participants’ scores

AD: Alzheimer’s disease; FTD: frontotemporal dementia; MMSE: Mini Mental State Examination; N/A: not
available or applicable; PPA: primary progressive aphasia; SD: standard deviation
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differentiated FTD from controls with 79 % sensitivity and
76 % specificity (Fig. 3c).

Overall, misclassification of participants was not explained
by age, gender, PPA variant, or MMSE, as these variables
deviated less than 1 standard deviation in FP and FN cases
compared to true positive and negative cases. However, male
controls were labeled as diseased more than female controls:
in differentiating AD from healthy controls, five out of six FP
cases were male and in differentiating FTD from controls six
out of six.

Discussion

The main finding of our study is that ASL-MRI contributes to
early differential diagnosis of presenile dementia. Compared to
FTD patients, AD patients showed hypoperfusion in the PCC.

Differentiation between the patient groups based on this finding
had a diagnostic performance of 74 %. Compared to age-
matched controls, FTD patients showed focal hypoperfusion
in the ACC, whereas AD patients showed a more extensive
hypoperfusion. These CBF changes discriminated FTD and
AD patients well from age-matched controls (diagnostic perfor-
mances of 78 % and 85 %, respectively). Finally, we observed
that CBF was globally reduced with increased age, which
should be distinguished from the pathological hypoperfusion
in dementia. Atrophy and hypoperfusion corresponded fre-
quently in AD, but not in FTD. Crucially, gray matter volume
was not different between AD and FTD, indicating that these
cannot be distinguished based on regional atrophy at this stage
and in this patient population. This indicates that ASL-MRI
provides contributing information for the differential diagnosis.

The observed lower CBF in the PCC in AD than in FTD is
in agreement with previous studies [8, 9, 29]. Notably, we

Table 3 Mean GM CBF and volume (standard deviations) for AD and FTD patients, and older and young controls

AD FTD Older controls
(OC)

Young controls
(YC)

P-values

AD
vs. OC

FTD vs. OC FTD vs. AD

Total GM CBF 32.6 (8.79) 37.4 (6.91) 42.0 (7.90) 60.7 (7.86) .005 .372 .542

Volume 31.7 (4.01) 31.0 (3.23) 35.7 (2.38) 43.1 (1.35) <.0005 <.0005 1.000

Regions affected in dementia

MTL CBF 33.0 (5.69) 36.2 (7.10) 38.4 (5.10) 49.0 (5.31) .048 1.000 .762

Volume 0.17 (0.02) 0.15 (0.03) 0.20 (0.02) 0.19 (0.01) .001 <.0005 .122

Temporal lobe CBF 33.9 (8.25) 37.3 (6.78) 42.7 (6.15) 55.5 (7.74) .003 .094 1.000

Volume 0.54 (0.08) 0.50 (0.08) 0.62 (0.04) 0.72 (0.03) <.0005 <.0005 .367

Precuneus CBF 27.0 (7.30) 35.3 (8.73) 39.5 (10.2) 58.2 (8.33) .001 .751 .074

Volume 1.10 (0.13) 1.12 (0.14) 1.25 (0.10) 1.48 (0.11) .006 .008 1.000

PCC CBF 40.1 (11.5) 49.6 (9.40) 55.8 (9.78) 73.4 (8.41) <.0005 .223 .048

Volume 0.28 (0.06) 0.29 (0.04) 0.33 (0.04) 0.41 (0.03) .003 .046 1.000

Thalamus CBF 32.4 (8.27) 36.4 (8.59) 42.5 (8.36) 56.6 (7.45) .004 .105 1.000

Volume 0.15 (0.02) 0.18 (0.03) 0.18 (0.01) 0.25 (0.03) .037 1.000 .122

ACC CBF 42.6 (10.9) 43.0 (7.04) 50.9 (7.55) 70.3 (9.01) .033 .018 1.000

Volume 0.13 (0.03) 0.12 (0.03) 0.14 (0.02) 0.19 (0.02) .691 .005 .978

Medial PFC CBF 37.6 (10.8) 39.9 (7.99) 46.0 (7.55) 71.5 (8.79) .033 .136 1.000

Volume 0.52 (0.08) 0.46 (0.09) 0.57 (0.05) 0.71 (0.04) .153 <.0005 .130

Regions initially unaffected in dementia

Precentral gyrus CBF 35.0 (11.1) 38.2 (6.57) 40.8 (9.48) 62.5 (8.01) .320 1.000 1.000

Volume 0.90 (0.14) 0.86 (0.08) 0.92 (0.09) 1.06 (0.09) 1.000 .371 1.000

Occipital lobe CBF 26.1 (7.48) 32.5 (8.63) 36.2 (8.64) 48.6 (7.93) .004 .880 .213

Volume 1.35 (0.20) 1.45 (0.17) 1.52 (0.15) 1.85 (0.16) .022 1.000 .508

Calcarine cortex CBF 34.2 (7.79) 41.4 (6.91) 42.5 (9.65) 54.8 (7.24) .021 1.000 .094

Volume 0.42 (0.05) 0.45 (0.04) 0.46 (0.05) 0.53 (0.05) .017 1.000 .237

MeanGMCBF (ml/100 g GM/min) and volume (% intracranial volume) in ROIs in FTD andADpatients and older and young controls.P-values printed
in italics indicate significant differences. As differences between young controls and all other groups were significant in all ROIs (except for MTL
volume, please see text), p-values of these comparisons are not shown

ACC: anterior cingulate cortex; AD: Alzheimer’s disease; CBF=cerebral blood flow; FTD: frontotemporal dementia; GM: gray matter; MTL: medial
temporal lobe; PCC: posterior cingulate cortex; PFC: prefrontal cortex
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Fig. 2 Regional cerebral blood
flow (CBF in ml/100 g GM/min)
in FTD and AD patients and older
and young controls. The central
box represents values from lower
to upper quartile (25-75
percentile), the middle line
represents the median, and
vertical bars extend from
minimum to maximum values.
Markers outside the bars indicate
extreme values (sphere: value≥
1.5 x interquartile range (IQR);
asterisk: value≥3 x IQR. ACC:
anterior cingulate cortex; AD:
Alzheimer’s disease; CBF:
cerebral blood flow; FTD:
frontotemporal dementia; GM:
gray matter; MTL: medial
temporal lobe; PCC: posterior
cingulate cortex; PFC: prefrontal
cortex; ROI: region of interest

Table 4 Diagnostic performance
(area under the curve: AUC) of
cerebral blood flow in regions
significantly different between
patients and controls.

AD vs. FTD AD vs. OC FTD vs. OC

AUC 95% CI AUC 95% CI AUC 95% CI

Upper Lower Upper Lower Upper lower

MTL … … … 0.760 0.604 0.916 … … …

Temporal lobe … … … 0.812 0.666 0.958 … … …

Precuneus … … … 0.849 0.729 0.969 … … …

PCC 0.741 0.563 0.919 0.837 0.706 0.967 … … …

Thalamus … … … 0.797 0.645 0.949 … … …

ACC … … … 0.735 0.555 0.916 0.775 0.633 0.916

Medial PFC … … … 0.735 0.554 0.917 … … …

ACC: anterior cingulate cortex; AD:Alzheimer’s disease; AUC: area under the curve; CI: confidence interval; FTD:
frontotemporal dementia; MTL: medial temporal lobe; OC: older controls; PCC: posterior cingulate cortex; PFC:
prefrontal cortex. Only regions showing significant differences between groups in the one way-ANOVA are shown.
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found CBF measurement in the PCC performing reasonably
(74 %) to differentiate presenile AD from FTD, which may
thus serve as a diagnostic marker to differentiate these diseases
at an early stage. Previous studies reported additional differ-
ential regional hypoperfusion in the precuneus and temporo-
parietal cortex in AD, and in the ACC and frontal cortex in
FTD [8, 9, 29]. Our AD patients had lower CBF than FTD
patients in all regions, including in those typically lower in
FTD, which may have obscured differences between the pa-
tient groups. Nevertheless, the extensive CBF changes are
consistent with the literature [30–32], and with the finding that
in early FTD that the extent of atrophy exceeds that of hypo-
perfusion, while in AD these are similar [29].

This discrepancy in hypoperfusion may also explain why
CBF changes in FTD patients were limited to the ACC. Ad-
ditional hypoperfusion in FTD has been reported in the tem-
poral lobe, medial PFC, and thalamus [29], whereas
hypometabolism on PET is generally limited to frontal regions
in early-stage fluent PPA and behavioral-variant FTD (bv-
FTD) [33]. The localized ACC hypoperfusion may, thus, be
due to the disease still being at an early stage. Furthermore,
focal ACC neuronal loss has been associated with tau pathol-
ogy [34] which is correlated with both bv-FTD and PPA var-
iants [35], suggesting our FTD sample comprises predomi-
nantly patients with tau pathology.

CBF was globally decreased in AD, but of note is that a
global CBF decrease does not necessarily indicate dementia.
Compared to young controls, older controls also show globally
decreased CBF. This is concordant with previous studies [36]
and suggests that CBF reduces with aging. To our knowledge,
no longitudinal ASL studies exist to verify this, but a longitu-
dinal PETstudy supports this conclusion [37]. Closer examina-
tion of the global CBF changes showed that relative regional
differences are generally preserved with age but also with

neurodegeneration. For instance, despite the disproportionate
widespread hypoperfusion in AD, and being most severely
affected in AD and FTD, the PCC and ACC remain among
the regions with the highest CBF. This intrinsically high region-
al CBF may obscure subtle neurodegenerative changes, and,
thus, requires quantitative measurement rather than visual
inspection.

This study has some limitations. First, our ROI definition
was somewhat different from functional definition of ROIs by
the literature. The structural ROIs used here may explain some
unexpected findings, such as hypoperfusion in the calcarine
cortex in AD. Our structural ROI also included the lingual
gyrus and cuneus, which have shown hypoperfusion in AD
[30] and may thus have affected this entire region’s CBF.
Nevertheless, our results are generally consistent with previ-
ous findings. We specifically chose this multi-subject atlas
[21, 22] because its automated ROI definition is more robust
than single-subject atlases. Second, the cross-sectional design
does not allow for generalization of results to aging as a pro-
cess. Still, the results provide insight in physiological CBF
changes associated with higher age, compared to pathological
CBF changes in higher age with concomitant dementia. Third,
our sample is rather heterogeneous, comprising not only pa-
tients with AD or FTD phenotype, but also with PPAwith AD
or FTD as underlying pathology. Patient misclassification
seemed not be affected by PPA variant, nor by gender, age,
or MMSE. The heterogeneity of our sample on the other hand
illustrates precisely the complexity of this patient population
and the difficulty inherent to nosological diagnosis as a refer-
ence standard. A degree of uncertainty always remains, al-
though it decreases as the disease progresses. Nevertheless,
like the majority of in vivo dementia studies, our study relies
on a reference standard that implies classification by means of
the best available evidence. In addition, we report group

Fig. 3 Receiver operating characteristic (ROC) curves and optimal cut-
off points and associated sensitivity and specificity for GM CBF in re-
gions of interest that show significant differences between AD and FTD
patients (a), AD patients and older controls (b) and FTD patients and

older controls (c). ACC: anterior cingulate cortex; AD: Alzheimer’s dis-
ease; FTD: frontotemporal dementia; GM: gray matter; MTL: medial
temporal lobe; OC: older controls; PCC: posterior cingulate cortex;
PFC: prefrontal cortex
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effects, which may not necessarily generalize to individual
patients. These issues may challenge the diagnostic value of
ASL. However, we collected ASL data at a time point in the
diagnostic process when diagnosis was not yet definitive. On-
ly after follow-up, diagnosis was established. This shows that
with ASL diagnosis can be made earlier than with routine
clinical criteria, even at the individual patient level. Future
studies should focus on validation of group results for indi-
vidual diagnosis. Finally, the current results were obtained
using a single scanner, while CBF measurement may not be
robust across imaging centers. Inter-scanner and inter-vendor
differences should be taken into account in patient studies [15]
to reliably interpret quantitative CBF changes indicative of
dementia and establish cut-off values.

In conclusion, we show that ASL-MRI can contribute to
early diagnosis of presenile dementia and differentiate be-
tween AD and FTD where structural MRI does not. Hypoper-
fusion in the precuneus, ACC, and PCC may serve as quanti-
tative diagnostic markers for respectively presenile AD, FTD,
and their differentiation. Widespread hypoperfusion is seen in
early stage presenile AD, but needs to be distinguished from a
physiological CBF decrease in the older population. The clin-
ical implementation of ASL should eventually be based on
data of multicenter studies. This will help to determine and
validate reference values and further improve diagnostic per-
formance of differential diagnosis in early stage presenile
dementia.
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