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Introduction: In the pediatric brain tumor surgery setting, intraoperative MRI
(ioMRI) provides “real-time” imaging, allowing for evaluation of the extent of
resection and detection of complications. The use of advanced MRI sequences
could potentially provide additional physiological information that may aid in the
preservation of healthy brain regions. This review aims to determine the added
value of advanced imaging in ioMRI for pediatric brain tumor surgery compared to
conventional imaging.

Methods: Our systematic literature search identified relevant articles on PubMed
using keywords associated with pediatrics, ioMRI, and brain tumors. The literature
search was extended using the snowball technique to gather more information on
advancedMRI techniques, their technical background, their use in adult ioMRI, and
their use in routine pediatric brain tumor care.

Results: The available literature was sparse and demonstrated that advanced
sequences were used to reconstruct fibers to prevent damage to important
structures, provide information on relative cerebral blood flow or abnormal
metabolites, or to indicate the onset of hemorrhage or ischemic infarcts. The
explorative literature search revealed developments within each advanced MRI
field, such as multi-shell diffusion MRI, arterial spin labeling, and amide-proton
transfer-weighted imaging, that have been studied in adult ioMRI but have not yet
been applied in pediatrics. These techniques could have the potential to provide
more accurate fiber tractography, information on intraoperative cerebral
perfusion, and to match gadolinium-based T1w images without using a
contrast agent.

Conclusion: The potential added value of advanced MRI in the intraoperative
setting for pediatric brain tumors is to prevent damage to important structures, to
provide additional physiological or metabolic information, or to indicate the onset
of postoperative changes. Current developments within various advanced ioMRI
sequences are promising with regard to providing in-depth tissue information.
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1 Introduction

Pediatric brain tumor surgery aims for a complete resection of
tumor tissue while avoiding damage to healthy functional brain
regions. The extent of resection (EOR) is a key indicator of the
child’s prognosis after surgery (Lindner et al., 2017; Tejada et al.,
2018). An increased EOR could improve progression-free and
overall survival (Marongiu et al., 2016; Costabile et al., 2019; Li
et al., 2021) and reduce the risk of early reoperation (Shah et al.,
2012; Sunderland et al., 2021).

The implementation of intraoperative magnetic resonance
imaging (ioMRI) aims to sustain these goals by enabling “real-
time” images of the brain, allowing for intraoperative evaluation of
the extent of resection (EOR) (Marongiu et al., 2016). In 38% of
pediatric ioMRI-guided surgical cases, the ioMRI was followed by
additional resection leading to a substantial increase in EOR (Karsy
et al., 2019; Giussani et al., 2022).

IoMRImay also contribute to alleviate a second challenge during
surgery; avoiding damage to healthy functional brain regions and
preserving the quality of life (Sunderland et al., 2021). Particularly,
ioMRI can pinpoint intraoperative complications such as
intracranial hemorrhage or tissue ischemia (Marongiu et al.,
2016). IoMRI also gives a “real-time” update on the actual
anatomy that may be affected by per-operative brain shift. All in
all, ioMRI imaging may be used to update the neuronavigation that
supports the neurosurgeon to achieve more radical tumor resections
while avoiding neurological damage in surrounding brain tissue
(Choudhri et al., 2015; Metwali et al., 2020; Sunderland et al., 2021).

Generally, ioMRI sites incorporate multiparametric imaging
optimized for surgical aims. Conventionally used sequences in
the pediatric ioMRI context are variations of 2D or 3D T1-and
T2-weighted (T1w and T2w) images to visualize residual tumor
tissue and to guide continuation of the neurosurgical resection
(Abernethy et al., 2012; Choudhri et al., 2014; Millward et al.,
2015; Giordano et al., 2017; Low et al., 2018; Tejada et al., 2018;
Karsy et al., 2019).

Advanced MRI sequences, on the other hand, could potentially
provide additional information on physiological aspects of the brain.
For example, these sequences could assess the functional integrity of
white matter tracts and blood perfusion or metabolic status of the
brain tissue (Abernethy et al., 2012; Sanvito et al., 2021; Petr et al.,
2022).

Potentially this might contribute to peroperative awareness and
support prevention of damage to healthy functional brain regions.

In this manuscript, we systematically review the literature,
aiming to answer the following question: “what is the added
value of advanced imaging in ioMRI for pediatric brain tumor
surgery, as compared to conventional imaging?”

2 Methods

We conducted a Pubmed search of the literature on advanced
MRI in the pediatric ioMRI setting, based on the following search
terms: (pediatr* OR paediatr* OR child*) AND (ioMRI OR iMRI OR
iopMRI OR “intraoperative MRI” OR “intra-operative MRI”) AND
(tumor* OR tumour* OR glioma*). Papers were screened on title
and abstract, and relevant articles were read in full text.

Articles were included based on the following criteria:

- Case series, cohorts, or trials including pediatric patients
(age <19 years) undergoing ioMRI for brain (tumor) surgery.

- The reported MRI sequences were intraoperatively acquired.
- The added value of advanced MRI sequences was reported.

Literature reviews, book chapters, articles on epilepsy, in vitro
studies, articles not written in English, or with no focus on surgery;
articles on low-field MRI (<1.5 Tesla), no focus on ioMRI or no
pediatric patients (age, <19 years) were excluded.

Conventional MRI sequences were defined as T1w, T2w, or
fluid-attenuated inversion recovery (FLAIR) sequences (with or
without gadolinium contrast) that can provide structural
information about the brain (Lequin and Hendrikse, 2017).
Advanced MRI sequences were defined as sequences that could
also provide information on physiology and functionality, including
metabolism, brain tumor cellularity, and hemodynamics (Lequin
and Hendrikse, 2017; Petr et al., 2022).

The following MRI sequences were considered as advanced MRI
sequences: arterial spin labelling (ASL), amide-proton transfer-
weighted imaging (APTw), dynamic contrast-enhanced (DCE),
dynamic susceptibility contrast (DSC), diffusion kurtosis imaging
(DKI), intravoxel incoherent motion (IVIM), multicomponent-
driven equilibrium single pulse observation of T1 and T2
(mcDESPOT), magnetic resonance spectroscopy (MRS), myelin
water imaging (MWI), neurite orientation and dispersion density
imaging (NODDI), quantitative magnetization transfer (qMT),
quantitative susceptibility mapping (QSM), relaxometry, vascular,
extracellular and restricted diffusion for cytometry in tumors
(VERDICT) (Petr et al., 2022); diffusion-weighted imaging
(DWI), diffusion tensor imaging (DTI), chemical shift imaging
(CSI), susceptibility-weighted imaging (SWI), and functional MRI
(Lequin and Hendrikse, 2017).

From each included study, the following data were extracted:
study center, magnetic field strength (Tesla), number of brain tumor
patients included, histopathological diagnosis, advanced MRI
sequences used, and their added value as reported in the study.

As this search yielded limited information, we extended our
search beyond the initial research question, using the snowball
technique, to gain more information on the technical background
of each advanced MRI technique, their use in ioMRI in adults, and
their use in routine pediatric brain tumor care.

3 Results

3.1 Systematic literature review

The literature search on PubMed yielded 128 articles, of which ten
met our inclusion criteria (Figure 1; Table 1) (Abernethy et al., 2012;
Yousaf et al., 2012; Avula et al., 2013; Ren et al., 2013; Giordano et al.,
2017; Tejada et al., 2018; Saint-Martin et al., 2019; Low et al., 2020; Avula
et al., 2021; Sunderland et al., 2021). Most of these studies were cohort
studies, twowere case series (Abernethy et al., 2012; Ren et al., 2013), one
included a review of experience (Abernethy et al., 2012), and one
included a comparison of their results to existing literature (Low
et al., 2020). A total of 604 ioMRI brain tumor patients were
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described in the included literature. All studies that resulted from our
PubMed search were performed on either a 1.5 or 3 Tesla MRI scanner.
These studies aimed to report the initial ioMRI experience, to evaluate
early repeat resection (Avula et al., 2013), to detect ischemic infarcts on
diffusion ioMRI (Saint-Martin et al., 2019), or to evaluate ioMRI scans as
post-operative scans (Avula et al., 2021). The included studies described
a heterogeneous group of histopathological brain tumors with advanced
MRI (Table 1). Just one study focused specifically on advanced ioMRI
(Saint-Martin et al., 2019) but did not perform any post-processing for
further data analysis. Eight studies were evaluated as having a low risk of
bias as they included consecutive patients of all histopathological brain
tumors though five of these studies reported advanced imaging only in
selective patients (Abernethy et al., 2012; Yousaf et al., 2012; Avula et al.,
2013; Tejada et al., 2018; Low et al., 2020), introducing an increased bias
risk. Two studies had a higher risk of bias as they selected based on tumor
type; subendymal giant cell astrocytoma (Ren et al., 2013) or thalamic
tumor patients (Sunderland et al., 2021).

The ten articles that reported the use of advanced ioMRI
sequences for pediatric brain tumor surgery focused on diffusion
MRI (DWI and DTI), perfusion MRI (DSC), and metabolic MRI
(MRS and CSI). Diffusion MRI was used in 288 patients, covered by
seven studies (Ren et al., 2013; Giordano et al., 2017; Tejada et al.,
2018; Saint-Martin et al., 2019; Low et al., 2020; Avula et al., 2021;
Sunderland et al., 2021). Three other studies that covered diffusion
MRI did not specify the number of patients. Most authors used DWI
to detect diffusion restriction that can indicate hemorrhage or
ischemic infarcts and DTI for reconstructing fibers

(i.e., corticospinal tract and arcuate fasciculus) to avoid damage to
important structures. DTI was also used to generate B0 and apparent
diffusion coefficient (ADC)maps to visualize ischemic infarcts (Saint-
Martin et al., 2019). PerfusionMRI was used in 22 patients, covered by
one study (Tejada et al., 2018). Three other studies also used perfusion
MRI for selective patients but did not specify their numbers. Authors
used DSC for early resection control and additional physiological
information on relative cerebral blood flow. Metabolic MRI was used
in 11 patients, covered by one study (Tejada et al., 2018). Two other
studies that reported use of MRS did not specify the number of
selected patients. MRS and CSI were used to evaluate the presence of
abnormal high concentration of metabolites (i.e., choline) that could
either represent edema or tumor invasion.

In conclusion, the sparse literature demonstrated that advanced
sequences in ioMRI for pediatric brain tumor surgery was used to
reconstruct fibers to prevent damage to important structures, provide
information on relative cerebral blood flow or abnormal metabolites, or
to indicate the onset of hemorrhage or ischemic infarcts.

3.2 Explorative literature review

The explorative literature search was confined to the same
advanced MRI fields: diffusion-, perfusion-, and metabolic MRI.
It focused on the technical background of the sequences, their use in
the ioMRI setting for adult brain tumor surgery, and their use in
routine pediatric brain tumor care.

FIGURE 1
Study flowchart.
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TABLE 1 Study designs and parameters of included studies.

Study Included
pediatric
ioMRI brain
tumor
patients [total]

Study
design

Study aim Brain tumor types
described with advanced
MRI (histopathology or
location)

Advanced
MRI
sequence

Added value

Abernethy et al. (2012) Not mentioned Review of
experience and
case series

Report of initial
ioMRI
experience

Not mentioned DTI Reconstruction of fibers
to avoid damage to
important structures.

Alder Hey Children’s
Hospital, Liverpool,
United Kingdom

DSC Early resection control
and information on
relative cerebral
blood flow.

Yousaf et al. (2012) 73 [73] Cohort Report of initial
ioMRI
experience

Deep-seated tumors (DTI),
pathology not provided

DTI Reconstruction of fibers
to avoid damage to
important structures.

Alder Hey Children’s
Hospital, Liverpool,
United Kingdom

DSC Early resection control
and information on
relative cerebral
blood flow.

MRS Evaluation of presence of
abnormal metabolites.

Avula et al. (2013) 36 [72] Cohort Evaluation of
early repeat
resection

Atypical teratoid rhabdoid
tumor (MRS)

DWI Detect diffusion
restriction that can
indicate hemorrhage or
ischemic infarcts.

Alder Hey Children’s
Hospital, Liverpool,
United Kingdom

DSC Information on relative
cerebral blood flow.

MRS Evaluation of presence of
abnormal metabolites.

Ren et al. (2013) 7 [7] Case series Report of initial
ioMRI
experience in
SEGA patients

SEGA DTI Reconstruction of
corticospinal tract and
arcuate fasciculus to
avoid damage to
important structures.

PLA General Hospital,
Beijing, China

Giordano et al. (2017) 75 [75] Cohort Report of ioMRI
experience

Craniopharyngioma, Rathke’s cleft
cyst, pituitary macroadenoma,
pilocytic astrocytoma, diffuse
astrocytoma, glioblastoma,
oligodendroglioma, angiocentric
glioma, SEGA, anaplastic
astrocytoma, ependymoma,
cortical dysplasia, ganglioglioma,
hamartoma, germinoma, PNET.

DTI Reconstruction of fibers
to avoid damage to
important structures.

International
Neuroscience
Institute–Hannover,
Hannover, Germany

Tejada et al. (2018) 223 [223] Cohort Report of ioMRI
experience

High-grade glioma (DTI, CSI),
midline glioma, and multifocal
embryonal tumor (DWI).

DWI Detect diffusion
restriction that can
indicate hemorrhage or
ischemic infarcts.

DTI Reconstruction of fibers
to avoid damage to
important structures.

Alder Hey Children’s
Hospital, Liverpool,
United Kingdom

DSC Information on relative
cerebral blood flow.

MRS and CSI Evaluation of presence of
abnormal metabolites
that could either
represent edema or
tumor invasion.

(Continued on following page)
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3.3 Diffusion MRI

3.3.1 Technical background of diffusion MRI
Diffusion MRI (dMRI) is based on the diffusion of water

molecules and provides information on the microstructural tissue
organization. In dMRI, multiple diffusion-weighted images are
acquired in multiple spatial directions.

Diffusion tensor imaging (DTI) leverages dMRI data
acquired at a single diffusion weighting (b-value) that is
therefore called single-shell acquisition (Table 2). It is the
conventional dMRI quantification method in clinical practice.
The acquisition of dMRI data with multiple b-values, called

multi-shell, has recently become feasible within clinically
acceptable acquisition times. Multi-shell dMRI allows for more
advanced quantification models like diffusion kurtosis
imaging (DKI).

DMRI metrics such as the apparent diffusion coefficient (ADC)
and fractional anisotropy (FA) can be used to disentangle tissue
components (e.g., cellular mass versus edema or other cavities) that
can be useful for clinical decision-making (Lequin and Hendrikse,
2017). DKI has been shown to be more sensitive to microstructural
changes than DTI (Mohammadi et al., 2015; Yeh et al., 2021).
Moreover, multi-shell dMRI data allowed models that could capture
the presence of multiple water components (Rydhög et al., 2017),

TABLE 1 (Continued) Study designs and parameters of included studies.

Study Included
pediatric
ioMRI brain
tumor
patients [total]

Study
design

Study aim Brain tumor types
described with advanced
MRI (histopathology or
location)

Advanced
MRI
sequence

Added value

Saint-Martin et al. (2019) 115 [115] Cohort Detection of
ischemic infarct
on diffusion
ioMRI

Medulloblastoma, pilocytic
astrocytoma, glioblastoma,
anaplastic ependymoma,
craniopharyngioma, epidermoid
cyst, anaplastic ganglioglioma,
desmoplastic infantile
ganglioglioma, and hypothalamic
hamartoma.

DTI Generate B0 and ADC
maps to visualize
ischemic infarcts.

The Montreal Children’s
Hospital, Montreal,
Canada

Low et al. (2020) 35 [43] Cohort and
comparison to
literature

Report of ioMRI
experience

Not mentioned DTI Reconstruction of
corticospinal tract to
avoid damage to
important structures.

KK Women’s and
Children’s Hospital,
Singapore, Singapore

Avula et al. (2021) 20 [20] Cohort Evaluation of
ioMRI scan as
post-operative
scan

Medulloblastoma, pilocytic
astrocytoma, fibrillary
astrocytoma, ganglioglioma,
craniopharyngioma, high-grade
glioma, pleomorphic
xanthoastrocytoma, pilomyxoid
astrocytoma, SEGA, and pituitary
adenoma.

DWI and DTI Detect diffusion
restriction that can
indicate hemorrhage or
ischemic infarcts.

Alder Hey Children’s
Hospital, Liverpool,
United Kingdom

Sunderland et al. (2021) 20 [30] Cohort Report of ioMRI
experience in
thalamic tumor
patients

Thalamic tumors DTI Reconstruction of fibers
to avoid damage to
important structures.

Alder Hey Children’s
Hospital, Liverpool,
United Kingdom

IoMRI = intraoperative MRI; DTI = diffusion tensor imaging; DSC = dynamic susceptibility contrast; MRS = magnetic spectroscopy resonance; SEGA = subependymal giant cell astrocytoma;

PNET = primitive neuroectodermal tumor.

TABLE 2 Difference between single- and multi-shell diffusion MRI acquisition for brain tumor imaging.

Single-shell diffusion MRI Multi-shell diffusion MRI

Typical quantification
methods

DTI DKI

Typical b-values Single, around b = 1000 s/mm2. Multiple, between b = 1,000 and b = 3,000 s/mm2. For example, b = 1,000, 2000,
3,000 s/mm2.

Fiber tractography model Depending on the number of gradient directions:
• <28, DTI. Unable to resolve crossing fibers.
• ≥28, spherical deconvolution. Can (partly) resolve
crossing fibers*

Advanced methods applicable if at least 28 gradient directions (45+ recommended) are
collected for the largest b-value. Can resolve crossing- and kissing fibers, and account for
partial volume effects (e.g., fluids).

DTI = diffusion tensor imaging; DKI = diffusion kurtosis imaging; b-value = Diffusion weighting.

*Guo et al. (2020).
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such as free water (e.g., edema) (Pasternak et al., 2009) or perfusion
(e.g., intra-voxel incoherent motion) (De Luca et al., 2017). In
addition to microstructural properties, dMRI data can be used to
reconstruct the trajectory of brain white matter pathways
(Figure 2A) (Jeurissen et al., 2019). When such fiber tractography
models are based on multi-shell dMRI, they could typically account
for crossing fibers and properties of different tissue types in the brain
(e.g., white matter versus grey matter versus free fluid). Multi-shell
data could be used to generate a more detailed and anatomically
accurate fiber tractography than single-shell dMRI (Table 4) (Poretti
et al., 2012; Mohammadi et al., 2015; Guo et al., 2020; Yeh et al.,
2021). Moreover, it might be able to map the border of major white

matter tracts and displaced fiber tracts more reliably (Nimsky, 2014;
De Luca et al., 2020). Disadvantages of multi-shell dMRI are lower
signal-to-noise ratio (SNR), which is often resolved with a lower
spatial resolution or longer acquisition time, and technically
demanding post-processing to increase image quality
(Mohammadi et al., 2015). Both single- and multi-shell dMRI are
sensitive to eddy currents and susceptibility artifacts between air and
tissue (Table 3). These artifacts are increased in the intraoperative
setting due to the open skull (Mohammadi et al., 2015; Lindner et al.,
2022). However, this might be worse in multi-shell diffusion MRI
acquisition due to the higher gradient amplitudes (Mohammadi
et al., 2015).

FIGURE 2
Neurosurgical cases demonstrating the added value of advanced MRI. (A) Preoperative images of a 10-year-old girl with a diffuse midline glioma
(H3K27 mt) originating from the left posterior thalamus and mesencephalon and expanding into the atrium of the left ventricle. Left: the transverse T1-
weighted contrast-enhanced image shows enhancement of the tumor (yellow outline). Center: the coronal fractional anisotropy color-coded map
(single-shell diffusionMRI, 16 directions) shows left-right asymmetry demonstrating the displacement of fibers caused by the tumor (yellow outline).
Thewhite circles depict the arcuate fasciculus, and the red ovals depict the corticospinal tracts. Solid lines depict the unaffected side, and the dashed lines
show the affected side. Right: reconstruction of the corticospinal tract 1), arcuate fasciculus 2), tumor 3), and optic radiation 4). A parietal surgical
approach posterior to the arcuate fasciculus and superior to the optic radiation 5) was chosen for tumormass reduction and histopathological diagnosis.
(B) Preoperative images of a 17-year-old girl with neurofibromatosis type 1 and a space-occupying lesion in the fourth ventricle. Left: the sagittal T1-
weighted contrast-enhanced images. The differential diagnosis was pilocytic astrocytoma or high-grade glioma. Center: transverse T1-weighted
contrast-enhanced image. Right: the hyperperfusion (white arrow) of the unquantified arterial spin labeling imagemakes diagnosing a high-grade glioma
more probable. Histopathological examination revealed a high-grade glioma with pilocytic features. (C) Preoperative images of a 17-year-old boy with a
pilocytic astrocytoma. Left: sagittal T1-weighted contrast-enhanced image. Center: transverse T1-weighted contrast-enhanced image. Right: amide-
proton transfer-weighted (APTw) image. Note the hyperintense region (white arrow) that matches the contrast enhancement on T1-weighted contrast-
enhanced image. The red outer rim (yellow arrow) of the APTw image is likely caused by susceptibility-weighted air-tissue artifacts. Ethical approval from
the local medical ethics committee was obtained for this study.
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3.3.2 Use of diffusion MRI in adult ioMRI setting
In the adult ioMRI setting, dMRI was used for fiber tracking of

white matter fibers in eloquent brain areas (Zhang et al., 2022). Due
to the brain shift after craniotomy, such fiber reconstructions had to
be adjusted intraoperatively (Zhang et al., 2022). Single-shell dMRI,
which is suitable for DTI, has been used more often in clinical
practice than multi-shell dMRI due to its reliance on simpler data
acquisition and reconstruction models (Mohammadi et al., 2015).
Previous research on intraoperative single-shell dMRI reported its
use in the estimation of brain shift (Metwali et al., 2020). It was also
an integral part of an ioMRI protocol which was able to increase
EOR from 44% to 88.5% in an adult glioblastoma population
(Marongiu et al., 2016). Studies comparing EOR in groups of
patients using ioMRI protocols with and without diffusion MRI
are not currently available and would be helpful to determine its
specific added value. Hypothetically, multi-shell dMRI might even
further improve these findings (Nimsky, 2014). The feasibility of
multi-shell dMRI fiber tractography was reported by Leote et al.
(2018) for the pre-surgical planning of adult brain tumor surgery.

3.3.3 Use of diffusion MRI in pediatric routine brain
tumor care

DMRI metrics, such as the ADC and FA, were used in routine
pediatric clinical practice to grade tumor tissue and differentiate it from
healthy brain tissue (Table 4) (Ouadih et al., 2022). ADCwas associated
with cellularity in previous studies, which was correlated with
extracellular diffusion (Villanueva-Meyer et al., 2017; She et al.,
2021). Reduced diffusivity (low ADC) compared to surrounding
tissues could point toward high cellular tumor tissue
(i.e., medulloblastoma) with little extracellular water and ischemia.
Conversely, high diffusivity (high ADC) could indicate increased
extracellular water, vasogenic edema, or necrotic tissue (Avula et al.,

2014). FA values were also used to grade brain tumor tissue in children,
where low FA has been associated with high-grade glioma (Poretti et al.,
2012). Furthermore, DKImetrics were consideredmore promising than
conventional dMRI metrics in tumor grading and prediction of the
expression of Ki-67, a histopathological cell proliferation biomarker
(Jiang et al., 2015; Sanvito et al., 2021).

3.4 Perfusion MRI

3.4.1 Technical background of contrast-based
perfusion MRI

Brain tumor perfusion characteristics can be investigated with
gadolinium contrast-based perfusion MRI sequences. Examples of
such imagingmethods are dynamic susceptibility contrast- (DSC) and
dynamic contrast-enhanced (DCE) imaging (Lequin and Hendrikse,
2017). Gadolinium contrast is the cornerstone of MRI tumor
diagnostics, but its disadvantages should be considered carefully.
First, gadolinium could cause the accumulation of toxic side
products, especially in renal failure patients, increasing the chance
of developing nephrogenic systemic fibrosis (Sadowski et al., 2007).
Second, gadolinium is a blood-pool contrast agent whose
enhancement assumes an intact blood-brain barrier. However,
surgical manipulation violates this assumption in the intraoperative
setting. This could lead to misinterpretation of gadolinium contrast
enhancement (Abernethy et al., 2012). Third, gadolinium could cause
a delay in sequence repetition if readministered within 24 h. However,
on the day of the surgical procedure, MR scan sessions are often
repeated (e.g., intra- and post-operative MRI or multiple ioMRI
sessions) (Millward et al., 2015; Keil et al., 2018). Fourth,
gadolinium may pose an environmental threat (Trapasso et al.,
2021). Taking these disadvantages of gadolinium contrast-based

TABLE 3 Technical considerations and details of each advanced MRI sequence.

Sequence Estimated average scan time* Desired
resolution§

Sequence-specific artifacts and considerations

Single-shell
dMRI

3 min (in case of DTI, whole-brain, about
20 directions)†

Isotropic, <2.5 mm Susceptible to air-tissue artifacts and eddy currents; Susceptible to artifacts
caused by free diffusion in tissue (e.g., edema).

Multi-shell dMRI 8 min (in case of a minimum protocol for DKI,
whole-brain, about 42 directions)‡

Isotropic, <2.5 mm Susceptible to air-tissue artifacts and eddy currents; Higher b-value
acquisition results in a lower SNR that needs to be compensated by
averaging or reducing the echo time; Longer acquisition time.

ASL 4 min 30 s (whole-brain) 3 × 3 × 7 mm Susceptible to air-tissue artifacts and blood flow artifacts caused by
pulsation of large blood vessels; Thick slices (7 mm) required to reach
desired SNR levels in the clinical setting; Difficult to position ASL labeling
box perpendicular to vessels in the neck when the patient has a twisted neck
in the surgical position.

MRS (single-
voxel)||

4 min 28 s 20 × 20 × 20 mm Susceptible to air-tissue artifacts; Long acquisition time and low spatial
resolution.

APTw imaging 4 min (half-brain) 0.9 × 0.9 × 6 mm Susceptible to air-tissue artifacts causing a B0 offset of the saturation pulse¶,
thereby less specific for APTw signal; Thick slices (6 mm) required to reach
desired SNR level in the clinical setting.

DMRI = diffusion MRI; DTI = diffusion tensor imaging; DKI = diffusion kurtosis imaging; SNR = signal-to-noise ratio; ASL = arterial spin labelling; MRS = magnetic resonance spectroscopy;

APTw = Amide proton transfer-weighted.

*Estimated scan time when making use of accelerated imaging techniques on a 3 Tesla strength while using two single-loop receiving coils.
†Whole brain is a field of view of 240 × 240 × 160 mm.
‡The acquisition of multi-shell dMRI with single-loop receiving coils cannot be accelerated with the multi-band technique as it is only available for a conventional multi-channel head coil.
§Reconstructed voxel size.
||Semi-LASER spectroscopy with an echo time of 35 ms.
¶Zhou et al. (2019).
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sequences into account, we shall focus on non-invasive alternatives for
this explorative literature search on perfusion MRI.

3.4.2 Technical background of non-invasive
perfusion MRI

Arterial spin labelling (ASL) is a perfusion MRI sequence that
can quantify absolute CBF based on endogenous blood water
(Keil et al., 2018). The ASL signal is based on subtracting two
consecutive images (Lindner et al., 2022). The first image labels
inflowing arterial blood at the cervical level that is magnetically
inverted with a radiofrequency pulse (Alsaedi et al., 2018; Keil
et al., 2018). This image is acquired after an appropriate delay
time, called the post-labeling delay, which depends on the speed
of blood flow and thus the health of the vascular tree (Carsin-Vu
et al., 2018; Keil et al., 2018). The second image is the control
image that covers the same downstream cerebral region of
interest but without magnetically inverting the blood in the
cervical arteries (Alsaedi et al., 2018). The ASL difference
image visualizes the perfusion signal from the arteries into
neighboring brain tissue (Alsaedi et al., 2018). This difference
image can then generate a map that represents the quantified CBF
in mL/100 g brain tissue/min (Keil et al., 2018).

ASL has the advantage that it is not susceptible to blood-brain
barrier leakage artifacts usually observed for gadolinium (Lindner
et al., 2017; Keil et al., 2018). Another important advantage is that it
can be easily repeated without any cost, except for adding the
scanning duration. Lastly, the ability of ASL to quantify absolute
CBF (Keil et al., 2018) is useful for assessment of cerebral vitality in
surgical and eloquent areas. Disadvantages of ASL are the relatively
low SNR (Table 3) and limited sensitivity in low CBF regions such as
white matter (Petr et al., 2022). However, the low SNR of the ASL
signal is less prominent in children (Yeom et al., 2013). The problem
of limited sensitivity in the white matter could be overcome by
integrating ASL and dMRI in a multiparametric model to generate a
comprehensive clinical overview.

3.4.3 Use of non-invasive perfusion MRI in adult
ioMRI setting

Intraoperative ASL could be used for iatrogenic changes in CBF
and to depict residual tumor tissue in adults (Table 4) (Lindner et al.,
2017). Lindner et al. (2017) reported the feasibility of intraoperative
residual tumor detection using ASL when compared to gadolinium-
contrast based T1w images (T1w-Gd) in adults with glioblastoma.
They argued that ASL could make a more definite judgment of
residual tumor tissue than conventional ioMRI sequences (Lindner
et al., 2017). However, only a small number of patients were included
in this study (n = 8). Another use of intraoperative ASL could be
mapping functional areas that should not be damaged during
surgery to avoid postsurgical deficits (Lindner et al., 2022). This
research also focused on an adult glioblastoma population. It
showed that intraoperative ASL could reliably map functional
areas and residual brain tumor after post-processing special data.
However, their analysis method also revealed false-positive artifacts
on the resection rim that should be carefully considered.

3.4.4Use of non-invasive perfusionMRI in pediatric
routine brain tumor care

Several studies have indicated that ASL could be a reliable
method to evaluate perfusion patterns of brain tumors in
pediatric populations (Yeom et al., 2013; Morana et al., 2017).
ASL-based CBF maps have been used routinely to grade tumor
tissue in children due to its correlation with tumor vascular density
(Yeom et al., 2013; Dangouloff-Ros et al., 2016; Keil et al., 2018). In
such a way, hyperperfusion on ASL images could indicate the high
malignity of tumor tissue, because of increased tumor tissue activity
and blood flow supply (Figure 2B) (Yeom et al., 2013; Dangouloff-
Ros et al., 2016; Keil et al., 2018). To illustrate this, Yeom et al. (2013)
presented a case diagnosed with mixed anaplastic astrocytoma-
glioblastoma that showed elevated CBF values in tumor tissue
compared to non-tumoral grey matter. On the other hand, low-
grade gliomas, such as dysembryoplastic neuroepithelial tumors,

TABLE 4 Clinical implications of advanced ioMRI in pediatrics.

Imaging
technique

Promises Pitfalls

Single-shell dMRI Conventional quantification method in clinical practice; DTI metrics (e.g.,
MD and FA) are reliable to grade tumor tissue.

Data is likely not optimal for fiber tractography in presence of edema and/
or fluid cavities.

Multi-shell dMRI Sensitive to additional effects than single-shell dMRI (e.g., diffusion
restrictions due to membranes). Suitable for state-of-the-art fiber
tractography methods to resolve crossing- and kissing fibers and account
for partial volume effects; DKI metrics can be used to grade tumor tissue
and predict Ki-67 expression; Detect residual diffusion restriction effects
and residual tumor tissue.

Not commonly used in clinical practice; Initially requires more expert
knowledge to set-up. Lack of user-friendly tools to leverage its full
potential.

ASL Detect residual tumor tissue; Differentiate from non-tumorous
gadolinium enhancement in resection cavity; Mapping of functional areas.

Artifacts in the control image can propagate in ASL difference image (e.g.,
false-positive hyperperfusion).

MRS (single-voxel) Metabolic evaluation of tumor tissue; Metabolite pattern recognition
could be assisted by automated processing.

Low specificity of tumor type.

APTw imaging Replace gadolinium-based anatomical sequences to detect residual tumor;
Can generate a quantified image; APTw signal could be associated with
increased protein levels.

Not commonly used in clinical practice; Potentially low detection
sensitivity to low-grade gliomas which are more prominent in pediatrics.

dMRI = diffusion MRI; DTI = diffusion tensor imaging; DKI = diffusion kurtosis imaging; MD = mean diffusivity; FA = fractional anisotropy; ASL = arterial spin labeling; MRS = magnetic

resonance spectroscopy; APTw = amide-proton transfer-weighted.
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showed low ASL-based CBF within the tumor region (Yeom et al.,
2013; Lequin and Hendrikse, 2017).

Some limitations of ASL in pediatric routine brain tumor care
should be considered. First, various ASL perfusion patterns existed for
both high- and low-grade gliomas depending on vascular characteristics
(e.g., vessel density and capillary exchange rate). Second, ASL
hypoperfusion in children could also be caused by edema or scar
tissue (Keil et al., 2018). Due to this heterogeneity of measurements in
different tumor types, ASL images should be considered in combination
with high-resolution anatomical images for a more definite judgement.
Third, the effect of anesthesia on regional CBF should also be
considered, as general anesthesia usually induces vasodilation
(Carsin-Vu et al., 2018; Keil et al., 2018).

3.5 Metabolic MRI

3.5.1 Technical background in metabolic MRI
Proton magnetic resonance spectroscopy (MRS) is a non-

invasive metabolic MRI technique that can detect metabolites in
the tissues (Wilson et al., 2019). For example, MRS could detect the
neurotransmitters glutamate, glutamine, GABA, and other
metabolites such as N-acetyl aspartate, choline, creatine, and
myo-inositol. Alterations in metabolite levels could give insight
into the pathophysiological condition of tissue (Petr et al., 2022).
A limitation of MRS is that on clinical field strengths (3 Tesla), the
sensitivity is relatively low as usually, the scan time in the clinic is
limited (Table 3) (Wilson et al., 2019). Therefore large voxel sizes of
8 mL are commonly used for MRS in clinical practice (Wilson et al.,
2019). This could be problematic in the intraoperative setting where
whole-brain images are preferred to evaluate spatial heterogeneity.
In that setting, the acquisition time for whole-brain chemical shift-
imaging (CSI) (or even a single slice) becomes a practical limitation.
Currently, fast whole brain CSI methods are not implemented as
vendor products for use in intraoperative setting.

Another metabolic MRI modality is chemical exchange
saturation transfer (CEST). CEST is an MRI modality that
exploits the abundance of exchangeable protons of a certain
metabolite, and its chemical exchange with water protons, to
image the relative concentration of a certain metabolite (Wu
et al., 2016). In CEST, protons of the metabolite of interest are
saturated by a prolonged saturation RF pre-pulse; during this pre-
pulse, water exchanges unsaturated protons with saturated protons
from the metabolites of interest, resulting in a reduction of the water
signal, which can be imaged over the whole volume. This has the
advantage of an easier interpretation in clinical practice compared to
single-voxel MRS (Wu et al., 2016). Amide-proton transfer-
weighted (APTw) imaging is a form of CEST imaging sensitive
to chemical exchange of protons in water, mobile proteins, and
peptides. This form of CEST has been mainly used for brain tumors
(Wu et al., 2016; Suh et al., 2019).

3.5.2 Use of metabolic MRI in adult ioMRI setting
In the intraoperative setting, metabolic MRI could be used to

provide biochemical information about relative metabolite
concentrations of potential residual tumor tissue (Pamir et al.,
2010; Yousaf et al., 2012). Pamir et al. (2010) reported that the
combination of MRS with DWI effectively differentiated

peritumoral changes from a residual tumor in adult low-grade
glioma. APTw imaging has not yet been described in the
intraoperative setting. However, APTw imaging has been
reported to guide stereotactic biopsy in adults with newly
diagnosed gliomas (Jiang et al., 2017). Jiang et al. (2017) showed
that the APTw signal was sensitive and specific for differentiating
between adult low- and high-grade gliomas.

Hypothetically, intraoperative APTw imaging might be an
alternative to a T1w-Gd sequence (Figure 2C). Yu et al. (2019)
reported that lesions identified on the APTw images mimicked
those on the T1w-Gd images of adult meningioma patients. To add
to this argument, APTw images could provide improved diagnostic
specificity compared to T1w-Gd images in high-grade glioma patients
(Zhou et al., 2013). APTw imaging accurately differentiated between
glioblastoma and solitary brain metastases in adults (Yu et al., 2017).
Also, Zhou et al. (2019) showed that APTw images added new
information to the standard T1w-Gd image in an oligodendroglioma
case. A disadvantage of intraoperative APTw images could be that
surgery-induced blood components could produce hyperintensity
artifacts on APTw images (Zhou et al., 2019; Zhang et al., 2021).
Moreover, whether the thicker slices used for APTw images in the clinic
still add valuable information in the surgical setting is questionable.
Lastly, the open skull during surgery could increase magnetic field (B0)
inhomogeneities due to the sensitivity of the APTw signal to air-tissue
interfaces which decreases accuracy of the APTw signal (Zhou et al.,
2019). To solve this issue, attention should be paid to remove all air
bubbles in the brain and B0 shimming to avoid these susceptibility
artifacts during intraoperative APTw image acquisition (Table 3). An
alternative could be to focus B0 shimming and CEST acquisition on a
specific region of interest instead of imaging the whole brain. Taking
technical and logistical limitations into account, intraoperative APTw
imaging seems to be the most useful in the case of high-grade glioma
patients (Chalil and Ramaswamy, 2016; Zhang et al., 2021).

3.5.3 Use of metabolic MRI in pediatric routine
brain tumor care

MRS has been used in clinical practice to support diagnosing and
differentiating brain tumor subtypes in children (Faghihi et al., 2017). In
such a way, spectroscopic patterns can be distinctive for tumor subtypes
(Vicente et al., 2013). Aggressive features of a tumor could be indicated
by an elevated choline-to-N-acetyl aspartate ratio or the presence of
lactate (Choudhri et al., 2015). The recognition of these patterns could
be assisted by automated processing in pediatrics (Vicente et al., 2013).
Due to regional metabolic variations, MRS alone did not suffice to
define all regional components of tumors (Lequin and Hendrikse,
2017). MRS should be combined with other standardized MRI
methods for a more definitive diagnosis. For example, based on the
metabolic profile alone, a pilocytic astrocytoma could be misdiagnosed
as amore aggressive variant due to a higher choline peak than a creatine
peak and an elevated lipid peak (Table 4) (Lequin andHendrikse, 2017).

APTw imaging could also be used in pediatric brain tumor care
to grade and identify the proliferative activity of tumor tissue (Zhang
et al., 2021). The increased protein levels in tumor tissue could be
indicated by increased APTw values that might be positively
correlated with Ki-67 expression levels (Table 4) (Wu et al.,
2016; Suh et al., 2019). Therefore, high-grade gliomas could be
indicated by a higher APTw signal than low-grade gliomas, although
these results were more heterogeneous in the pediatric population
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(Suh et al., 2019; Zhang et al., 2021). Besides, APTw imaging was
said to differentiate between brain tumor tissue and edema (Wen
et al., 2010). Zhang et al. (2020) presented a pediatric case where the
edema showed a similarly low APTw signal as the healthy
surrounding tissue. However, a comparison of the APTw signal
between tumor tissue and edema was missing. Due to the scarce
existing literature in the pediatric population, further research is
essential to reliably incorporate APTw imaging in clinical practice
(Suh et al., 2019).

4 Discussion

This study is a retrospective study of the literature on the added
value of advanced MRI in the intraoperative setting of pediatric brain
tumors compared to conventional MR imaging. Our systematic
literature search revealed that the fields of diffusion-, perfusion-, and
metabolic MRI have been reported for selective cases during surgery.
The available literature was sparse and demonstrated that advanced
sequences were used to prevent damage to reconstruct fibers to prevent
damage to important structures, provide information on relative
cerebral blood flow or abnormal metabolites, or to indicate the
onset of hemorrhage or ischemic infarcts.

Our explorative literature search revealed developments
within each advanced MRI field that have been studied in the
adult ioMRI population but have not yet been applied in
pediatrics. First, multi-shell dMRI could offer “real-time” fiber
tractography that was said to be more anatomically accurate than
models based on single-shell data. Second, ASL could give
information on intraoperative cerebral perfusion and could
indicate residual tumor tissue intraoperatively without a
contrast agent. Third, APTw imaging and ASL could
potentially match T1w-Gd images. Despite these promising
advances, the technical and practical limitations of each of
these advanced MRI sequences should be carefully considered
before implementing them in standard pediatric ioMRI protocols.

4.1 Future perspectives

Advanced MR images acquired during surgery could gain
insight into the effect of mechanical manipulation of a child’s
brain. Data from these sequences could be useful for research
into biomarkers predicting surgery-induced early effects of
intraoperative complications (Choudhri et al., 2015; Metwali
et al., 2020). For example, in research on surgery-induced
cerebellar mutism syndrome (CMS), intraoperative dMRI and
ASL imaging might help find biomarkers that could be used for
treatment development and prevention strategies (Ahmadian et al.,
2021). In such a way, CMS-related diffusion abnormalities that have
been seen in the proximal efferent cerebellar pathways (Avula et al.,
2014; Keil et al., 2018; Avula, 2020), could be detected earlier on by
means of multi-shell fiber tractography that is more anatomically
accurate. Also, the onset of supratentorial cortical hypoperfusion
related to CMS could be detected earlier on intraoperative ASL
perfusion maps (Ahmadian et al., 2021). Hypoperfusion in this
region was previously found to result from cortico-cerebellar
diaschisis (Keil et al., 2018).

Another example is the prediction of early postoperative seizures
after supratentorial brain tumor surgery with intraoperative ASL and
APTw imaging. These seizures have been associated with hemorrhage in
the resection cavity (Chassoux and Landre, 2017; Samudra et al., 2019;
Ersoy et al., 2020). As the onset of seizures in children has been associated
with cortical hyperperfusion (Oishi et al., 2012; Keil et al., 2018),
intraoperative perfusion imaging with ASL might be an early
predictor for seizures and even lead to intraoperative monitoring and
prevention (Palaniswamy et al., 2019). APTw images could have a similar
effect due to the association of seizures with a reduced pH that could be
picked up by a reduced APTw signal (Magnotta et al., 2012; Jin et al.,
2017).However, this seizure-induced change in pH changewas said to be
smaller than the precision of the pH measurement derived from APTw
data (Jin et al., 2017). Nevertheless, intraoperative APTw images could
have the unique potential to gain more insight into the physiologic
processes of postoperative seizures in young children.

Reports focusing on the added value of intraoperative use of
advanced MRI, particularly metabolic MRI, in the pediatric brain
tumor population are scarce to date. The existing literature was
often of a descriptive nature, and randomized controlled trials are
lacking. Whilst we could learn from proof of concept reports that use
advanced ioMRI in the adult population (Lindner et al., 2017), a specific
investigation into the pediatric population is required to understand this
unique situation better. Further, the majority of the included studies of
our systematic literature search originated from the same clinical center
(Abernethy et al., 2012; Yousaf et al., 2012; Avula et al., 2013; 2021;
Tejada et al., 2018; Sunderland et al., 2021). Their findings could
therefore potentially represent overlapping patient data.

To study the effect of surgery on a child’s brain, a
multiparametric approach, including diffusion, perfusion, and
metabolic ioMRI could be useful. Especially with the opportunity
of tissue pathological validation on the spot. Recent developments
regarding in vivo microscopy and high-speed histopathological
diagnostics (Hollon et al., 2020) may facilitate immediate
validation of these advanced ioMRI sequences in the near future.

Further development of accelerated imaging techniques could also
be explored to reduce the acquisition time or to improve image quality.
Particularly image acceleration techniques that could be used with the
limited number of single-loop receiving coils that are currently available
in the intraoperative setting. Alternatively, recent hardware development
of thinner, more flexible, or multi-channel coils could improve image
quality and reduce the transition time to and from the ioMRI suite.

The application of advanced ioMRI could be potentially valuable in
providing new relevant information of the brain in the peroperative
setting. The implementation might be challenging and involves close
collaboration between neurosurgeons, neuroradiologists, and physicists.
Collaboration among professionals from different ioMRI centres will
contribute and support progress in this field.

5 Conclusion

The potential added value of advancedMRI in the intraoperative
setting for pediatric brain tumors is to prevent damage to important
structures, to provide additional physiological or metabolic
information, or to indicate the onset of postoperative changes.
Current developments within various advanced ioMRI sequences
are promising with regard to providing in-depth tissue information.
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