162 research outputs found

    Circularly polarized microwaves for magnetic resonance study in the GHz range: application to nitrogen-vacancy in diamonds

    Full text link
    The ability to create time-dependent magnetic fields of controlled polarization is essential for many experiments with magnetic resonance. We describe a microstrip circuit that allows us to generate strong magnetic field at microwave frequencies with arbitrary adjusted polarization. The circuit performance is demonstrated by applying it to an optically detected magnetic resonance and Rabi nutation experiments in nitrogen-vacancy color centers in diamond. Thanks to high efficiency of the proposed microstrip circuit and degree of circular polarization of 85% it is possible to address the specific spin states of a diamond sample using a low power microwave generator.Comment: 4 pages, 7 figures, nitrogen-vacancy, microwave circular polarization, spin-state addressin

    Microwave saturation spectroscopy of nitrogen-vacancy ensembles in diamond

    Full text link
    Negatively-charged nitrogen-vacancy (NV−^-) centers in diamond have generated much recent interest for their use in sensing. The sensitivity improves when the NV ground-state microwave transitions are narrow, but these transitions suffer from inhomogeneous broadening, especially in high-density NV ensembles. To better understand and remove the sources of broadening, we demonstrate room-temperature spectral "hole burning" of the NV ground-state transitions. We find that hole burning removes the broadening caused by magnetic fields from 13^{13}C nuclei and demonstrate that it can be used for magnetic-field-insensitive thermometry.Comment: Main text: 5 pages, 4 figures. Supplement: 6 pages, 3 figure

    Suppression of p53 function in normal human mammary epithelial cells increases sensitivity to extracellular matrix–induced apoptosis

    Get PDF
    Little is known about the fate of normal human mammary epithelial cells (HMECs) that lose p53 function in the context of extracellular matrix (ECM)–derived growth and polarity signals. Retrovirally mediated expression of human papillomavirus type 16 (HPV-16) E6 and antisense oligodeoxynucleotides (ODNs) were used to suppress p53 function in HMECs as a model of early breast cancer. p53+ HMEC vector controls grew exponentially in reconstituted ECM (rECM) until day 6 and then underwent growth arrest on day 7. Ultrastructural examination of day 7 vector controls revealed acinus-like structures characteristic of normal mammary epithelium. In contrast, early passage p53− HMEC cells proliferated in rECM until day 6 but then underwent apoptosis on day 7. p53− HMEC-E6 passaged in non-rECM culture rapidly (8–10 passages), lost sensitivity to both rECM-induced growth arrest and polarity, and also developed resistance to rECM-induced apoptosis. Resistance was associated with altered expression of α3-integrin. Treatment of early passage p53− HMEC-E6 cells with either α3- or β1-integrin function-blocking antibodies inhibited rECM-mediated growth arrest and induction of apoptosis. Our results indicate that suppression of p53 expression in HMECs by HPV-16 E6 and ODNs may sensitize cells to rECM-induced apoptosis and suggest a role for the α3/β1-heterodimer in mediating apoptosis in HMECs grown in contact with rECM

    Mutations associated with a 17-gene leukemia stem cell score and the score’s prognostic relevance in the context of the European LeukemiaNet classification of acute myeloid leukemia

    Get PDF
    © 2020 Ferrata Storti Foundation. Leukemia stem cells (LSC) are more resistant to standard chemotherapy and their persistence during remission can cause relapse, which is still one of the major clinical challenges in the treatment of acute myeloid leukemia (AML). A better understanding of the mutational patterns and the prognostic impact of molecular markers associated with stemness could lead to better clinical management and improve patients’ outcomes. We applied a previously described 17-gene expression score comprising genes differently expressed between LSC and leukemic bulk blasts, for 934 adult patients with de novo AML, and studied associations of the 17-gene LSC score with clinical data and mutation status of 81 genes recurrently mutated in cancer and leukemia. We found that patients with a high 17-gene score were older and had more mutations. The 17-gene score was found to have a prognostic impact in both younger (aged \u3c 60 years) and older (aged ≥60 years) patients with AML. We also analyzed the 17-gene LSC score in the context of the 2017 European LeukemiaNet genetic-risk classification and found that for younger patients the score refined the classification, and identified patients currently classified in the European LeukemiaNet Favorable-risk category who had a worse outcome

    Complex karyotype in de novo acute myeloid leukemia: typical and atypical subtypes differ molecularly and clinically

    Get PDF
    © 2019, Springer Nature Limited. Complex karyotype (CK) with ≥ 3 abnormalities is detected in 10–12% of patients with acute myeloid leukemia (AML) and associated with poor prognosis. The most common unbalanced abnormalities found in CK result in loss of material from the 5q, 7q, and/or 17p chromosome arms. The presence of 5q, 7q, and/or 17p abnormalities denotes typical CK and their absence denotes atypical CK. Since molecular features of CK-AML are not well characterized, we investigated mutational status of 81 leukemia/cancer-associated genes in 160 clinically well-characterized patients. They included 136 patients with ≥ 3 exclusively unbalanced chromosome abnormalities, 96 of whom had a typical CK and 40 atypical CK, and 24 patients with ≥ 1 balanced abnormality in addition to ≥ 2 unbalanced ones. Patients with atypical CK-AML differed from those with typical CK-AML: they carried TP53 mutations less often (P \u3c 0.001) and more often PHF6 (P = 0.008), FLT3-TKD (P = 0.02), MED12 (P = 0.02), and NPM1 (P = 0.02) mutations. They were younger (P = 0.007), had higher WBC (P = 0.001) and percentages of marrow (P \u3c 0.001) and blood (P = 0.006) blasts, higher complete remission rates (P = 0.02), and longer overall survival (P \u3c 0.001), thus indicating that atypical and typical CK-AMLs constitute distinct disease subtypes. We also identified smaller patient subsets within both typical and atypical CK-AML that differed molecularly and clinically

    MicroRNAs: new players in acute myeloid leukaemia

    Get PDF
    MicroRNAs (miRNAs) are short non-coding RNAs that have key functions in a wide array of critical cell processes, including haematopoiesis by regulating the expression of multiple genes. Aberrant miRNA expression has been described in acute myeloid leukaemia suggesting a role in leukaemogenesis. In this review we summarise the current knowledge

    Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukemia

    Get PDF
    Chromosomal rearrangements are initiating events in acute lymphoblastic leukaemia (ALL). Here using RNA sequencing of 560 ALL cases, we identify rearrangements between MEF2D (myocyte enhancer factor 2D) and five genes (BCL9, CSF1R, DAZAP1, HNRNPUL1 and SS18) in 22 B progenitor ALL (B-ALL) cases with a distinct gene expression profile, the most common of which is MEF2DBCL9. Examination of an extended cohort of 1,164 B-ALL cases identified 30 cases with MEF2D rearrangements, which include an additional fusion partner, FOXJ2; thus, MEF2D-rearranged cases comprise 5.3% of cases lacking recurring alterations. MEF2D-rearranged ALL is characterized by a distinct immunophenotype, DNA copy number alterations at the rearrangement sites, older diagnosis age and poor outcome. The rearrangements result in enhanced MEF2D transcriptional activity, lymphoid transformation, activation of HDAC9 expression and sensitive to histone deacetylase inhibitor treatment. Thus, MEF2D-rearranged ALL represents a distinct form of high-risk leukaemia, for which new therapeutic approaches should be considered.This work was supported in part by the American Lebanese Syrian Associated Charities of St. Jude Children’s Research Hospital; by a Stand Up to Cancer Innovative Research Grant and St. Baldrick’s Foundation Scholar Award (to C.G.M.); by a St. Baldrick’s Consortium Award (S.P.H.), by a Leukemia and Lymphoma Society Specialized Center of Research grant (S.P.H. and C.G.M.), by a Lady Tata Memorial Trust Award (I.I.), by a Leukemia and Lymphoma Society Special Fellow Award and Alex’s Lemonade Stand Foundation Young Investigator Awards (K.R.), by an Alex’s Lemonade Stand Foundation Award (M.L.) and by National Cancer Institute Grants CA21765 (St Jude Cancer Center Support Grant), U01 CA157937 (C.L.W. and S.P.H.), U24 CA114737 (to Dr Gastier-Foster), NCI Contract HHSN261200800001E (to Dr Gastier-Foster), U10 CA180820 (ECOG-ACRIN Operations) and CA180827 (E.P.); U10 CA180861 (C.D.B. and G.M.); U24 CA196171 (The Alliance NCTN Biorepository and Biospecimen Resource); CA145707 (C.L.W. and C.G.M.); and grants to the COG: U10 CA98543 (Chair’s grant and supplement to support the COG ALL TARGET project), U10 CA98413 (Statistical Center) and U24 CA114766 (Specimen Banking). This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract Number HHSN261200800001E
    • …
    corecore