4,345 research outputs found

    Controlled nucleation of topological defects in the stripe domain patterns of Lateral multilayers with Perpendicular Magnetic Anisotropy: competition between magnetostatic, exchange and misfit interactions

    Full text link
    Magnetic lateral multilayers have been fabricated on weak perpendicular magnetic anisotropy amorphous Nd-Co films in order to perform a systematic study on the conditions for controlled nucleation of topological defects within their magnetic stripe domain pattern. A lateral thickness modulation of period ww is defined on the nanostructured samples that, in turn, induces a lateral modulation of both magnetic stripe domain periods λ\lambda and average in-plane magnetization component MinplaneM_{inplane}. Depending on lateral multilayer period and in-plane applied field, thin and thick regions switch independently during in-plane magnetization reversal and domain walls are created within the in-plane magnetization configuration coupled to variable angle grain boundaries and disclinations within the magnetic stripe domain patterns. This process is mainly driven by the competition between rotatable anisotropy (that couples the magnetic stripe pattern to in-plane magnetization) and in-plane shape anisotropy induced by the periodic thickness modulation. However, as the structural period ww becomes comparable to magnetic stripe period λ\lambda, the nucleation of topological defects at the interfaces between thin and thick regions is hindered by a size effect and stripe domains in the different thickness regions become strongly coupled.Comment: 10 pages, 7 figures, submitted to Physical Review

    Direct and Heterodyne Detection of Microwaves in a Metallic Single Wall Carbon Nanotube

    Full text link
    This letter reports measurements of microwave (up to 4.5 GHz) detection in metallic single-walled carbon nanotubes. The measured voltage responsivity was found to be 114 V/W at 77K. We also demonstrated heterodyne detection at 1 GHz. The detection mechanism can be explained based on standard microwave detector theory and the nonlinearity of the DC IV-curve. We discuss the possible causes of this nonlinearity. While the frequency response is limited by circuit parasitics in this measurement, we discuss evidence that indicates that the effect is much faster and that applications of carbon nanotubes as terahertz detectors are feasible

    The socio-ecology of zoonotic infections

    Get PDF
    AbstractThe resurgence of infectious diseases of zoonotic origin observed in recent years imposes a major morbidity/mortality burden worldwide, and also a major economic burden that extends beyond pure medical costs. The resurgence and epidemiology of zoonoses are complex and dynamic, being influenced by varying parameters that can roughly be categorized as human-related, pathogen-related, and climate/environment-related; however, there is significant interplay between these factors. Human-related factors include modern life trends such as ecotourism, increased exposure through hunting or pet owning, and culinary habits, industrialization sequelae such as farming/food chain intensification, globalization of trade, human intrusion into ecosystems and urbanization, significant alterations in political regimes, conflict with accompanying breakdown of public health and surveillance infrastructure, voluntary or involuntary immigration, loosening of border controls, and hierarchy issues in related decision-making, and scientific advances that allow easier detection of zoonotic infections and evolution of novel susceptible immunocompromised populations. Pathogen-related factors include alterations in ecosystems and biodiversity that influence local fauna synthesis, favouring expansion of disease hosts or vectors, pressure for virulence/resistance selection, and genomic variability. Climate/environment-related factors, either localized or extended, such as El Niño southern oscillation or global warming, may affect host–vector life cycles through varying mechanisms. Emerging issues needing clarification include the development of predictive models for the infectious disease impact of environmental projects, awareness of the risk imposed on immunocompromised populations, recognition of the chronicity burden for certain zoonoses, and the development of different evaluations of the overall stress imposed by a zoonotic infection on a household, and not strictly a person

    Water Fun at Exploration Station

    Get PDF
    This report documents the design and fabrication processes involved for the creation of an interactive science exhibit for the Grover Beach Exploration Station. This is a student-led senior project advised by Sarah Harding, professor of mechanical engineering, as a part of California Polytechnic State University in San Luis Obispo’s mechanical engineering program. The final product is a fully functioning, durable system that is capable of pumping and recycling water throughout use when users are in its vicinity. The exhibit is to be considered in 4 main subsystems: basin, plumbing, frame, and sleep mode system. A fiberglass basin that holds all the water in the exhibit sits recessed inside a welded steel frame. Water is pumped through the bottom of the basin from within an enclosed storage area inside the frame, and is recycled back into the water reservoir by placement of two weir valves. A submersible pump powers the exhibit, and is controlled by passive infrared sensors that activate when human presence is sensed within 15ft. While the manufacturing process did reach completion, testing and verification did not. However, proposed testing plans are still included in the appendices of the report for informational purposes. Divided into distinct sections, this report will enlighten the reader on each part of the design process. First, background research and preliminary design explains the methodology of developing the vision of the final design. Next, different design analysis techniques are given for each respective subsystem of the proposed exhibit. An in-depth description for manufacturing and testing of the completed exhibit is given for each subsystem. Finally, recommendations are given for future improvements to the exhibit, and what kinds of different decisions would be made in the design process if given a second iteration

    GIADA performance during Rosetta mission scientific operations at comet 67P

    Get PDF
    The Grain Impact Analyser and Dust Accumulator (GIADA) instrument onboard Rosetta studied the dust environment of comet 67P/Churyumov–Gerasimenko from 3.7 au inbound, through perihelion, to 3.8 au outbound, measuring the dust flow and the dynamic properties of individual particles. GIADA is composed of three subsystems: 1) Grain Detection System (GDS); 2) Impact Sensor (IS); and 3) Micro-Balances System (MBS). Monitoring the subsystems’ performance during operations is an important element for the correct calibration of scientific measurements. In this paper, we analyse the GIADA inflight calibration data obtained by internal calibration devices for the three subsystems during the period from 1 August 2014 to 31 October 2015. The calibration data testify a nominal behaviour of the instrument during these fifteen months of mission; the only exception is a minor loss of sensitivity for one of the two GDS receivers, attributed to dust contamination

    Platinum and N-doped carbon nanostructures as catalysts in hydrodechlorination reactions

    Full text link
    Novel Pt catalysts supported on undoped and N-doped (1% N, w) carbons with well interconnected and nanostructured mesoporosity (Vmesopore = 0.65 cm3 g−1, SEXT = 730 m2 g−1) were prepared and tested in the hydrodechlorination of 4-chlorophenol in water at 30–70 °C. The growth of Pt nanoparticles was achieved using incipient wetness impregnation and a modified colloidal synthesis. Total conversion of 4chlorophenol and 100% selectivity to cyclohexanol was achieved. The remarkable activity in the hydrogenation of the phenol resulting from hydrodechlorination has not been reported before with Pt catalysts and it is of high interest because it maximizes detoxification. When the Pt NPs were synthesized by incipient wetness impregnation some influence of the N-doping of the support was observed in the size and electronic state of the NPs. However, highly reproducible Pt NPs were prepared by in situ colloidal synthesis regardless the nature of the support. In this last case similar activity was observed for the catalysts with undoped and N-doped carbon support, although the activity increased more with temperature for the later. Apparent activation energies of 15–25 kJ mol−1 were obtained for the disappearance of 4-chlorophenolThe authors also thank to Hexion Speciality Chemicals Iberica S.A. for providing the resol resin Bakelite®PF9934 FL. The authors thank financial support (CTQ2012-32821, CTQ2015-65491_R) and C. Ruiz-García for PhD grant (BES-2013-066085) to MINEC
    • …
    corecore