632 research outputs found
CCD Photometry of the Classic Second Parameter Globular Clusters M3 and M13
We present high-precision V, B-V color-magnitude diagrams (CMDs) for the
classic second parameter globular clusters M3 and M13 from wide-field deep CCD
photometry. The data for the two clusters were obtained during the same
photometric nights with the same instrument, allowing us to determine accurate
relative ages. Based on a differential comparison of the CMDs using the Delta
(B-V) method, an age difference of 1.7 +/- 0.7 Gyr is obtained between these
two clusters. We compare this result with our updated horizontal-branch (HB)
population models, which confirm that the observed age difference can produce
the difference in HB morphology between the clusters. This provides further
evidence that age is the dominant second parameter that influences HB
morphology.Comment: 27 pages, 12 figures, Accepted for publication in A
The Hottest Horizontal-Branch Stars in omega Centauri - Late Hot Flasher vs. Helium Enrichment
UV observations of some massive globular clusters uncovered a significant
population of very hot stars below the hot end of the horizontal branch (HB),
the so-called blue hook stars. This feature might be explained either as
results of the late hot flasher scenario where stars experience the helium
flash while on the white dwarf cooling curve or by the progeny of the
helium-enriched sub-population recently postulated to exist in some clusters.
Moderately high resolution spectra of stars at the hot end of the blue HB in
omega Cen were analysed for atmospheric parameters and abundances using LTE and
Non-LTE model atmospheres. In the temperature range 30,000K to 50,000K we find
that 35% of our stars are helium-poor (log(n_He/n_H) < -2), 51% have solar
helium abundance within a factor of 3 (-1.5 <= log(n_He/n_H) <= -0.5) and 14%
are helium-rich (log(n_He/n_H)> -0.4). We also find carbon enrichment in step
with helium enrichment, with a maximum carbon enrichment of 3% by mass. At
least 14% of the hottest HB stars in omega Cen show helium abundances well
above the highest predictions from the helium enrichment scenario (Y = 0.42
corresponding to log(n_He/n_H) ~ -0.74). In addition, the most helium-rich
stars show strong carbon enrichment as predicted by the late hot flasher
scenario. We conclude that the helium-rich HB stars in omega Cen cannot be
explained solely by the helium-enrichment scenario invoked to explain the blue
main sequence. (Abridged)Comment: 4 pages, 3 figures, uses aa.cls (enclosed), accepted as A&A Lette
Automated data reduction workflows for astronomy
Data from complex modern astronomical instruments often consist of a large
number of different science and calibration files, and their reduction requires
a variety of software tools. The execution chain of the tools represents a
complex workflow that needs to be tuned and supervised, often by individual
researchers that are not necessarily experts for any specific instrument. The
efficiency of data reduction can be improved by using automatic workflows to
organise data and execute the sequence of data reduction steps. To realize such
efficiency gains, we designed a system that allows intuitive representation,
execution and modification of the data reduction workflow, and has facilities
for inspection and interaction with the data. The European Southern Observatory
(ESO) has developed Reflex, an environment to automate data reduction
workflows. Reflex is implemented as a package of customized components for the
Kepler workflow engine. Kepler provides the graphical user interface to create
an executable flowchart-like representation of the data reduction process. Key
features of Reflex are a rule-based data organiser, infrastructure to re-use
results, thorough book-keeping, data progeny tracking, interactive user
interfaces, and a novel concept to exploit information created during data
organisation for the workflow execution. Reflex includes novel concepts to
increase the efficiency of astronomical data processing. While Reflex is a
specific implementation of astronomical scientific workflows within the Kepler
workflow engine, the overall design choices and methods can also be applied to
other environments for running automated science workflows.Comment: 12 pages, 7 figure
The Hubble Constant
Considerable progress has been made in determining the Hubble constant over
the past two decades. We discuss the cosmological context and importance of an
accurate measurement of the Hubble constant, and focus on six high-precision
distance-determination methods: Cepheids, tip of the red giant branch, maser
galaxies, surface brightness fluctuations, the Tully-Fisher relation and Type
Ia supernovae. We discuss in detail known systematic errors in the measurement
of galaxy distances and how to minimize them. Our best current estimate of the
Hubble constant is 73 +/-2 (random) +/-4 (systematic) km/s/Mpc. The importance
of improved accuracy in the Hubble constant will increase over the next decade
with new missions and experiments designed to increase the precision in other
cosmological parameters. We outline the steps that will be required to deliver
a value of the Hubble constant to 2% systematic uncertainty and discuss the
constraints on other cosmological parameters that will then be possible with
such accuracy.Comment: To be published in Annual Reviews of Astronomy and Astrophysics, Vol.
48, 2010, consisting of 79 pages, 13 figures, 2 table
Clusters AgeS Experiment. Hot subdwarfs and luminous white dwarf candidates in the field of the globular cluster M4
We present UBV color magnitude diagrams (CMDs) for the globular cluster M4.
The CMDs show a sequence of four luminous blue stars (V<20, U-V<-0.6) which
appear to be cluster hot subdwarfs. We present spectra for the three brightest
ones. We also note the presence of a population of faint blue objects, likely
to be hot, young white dwarfs (WDs) belonging to the cluster. We have selected
five objects above V=22 mag, bright enough for follow-up ground-based
spectroscopy and present their coordinates and finding charts. We show a
spectrum for variable V46 (Kaluzny et al. 1997) which suggests that it is a hot
subdwarf, along with a new light curve obtained with the ISIS image subtraction
package (Alard 2000). The light curve is unstable, but only one period of
variability is apparent. Two new variables have been discovered, both located
on the cluster red giant branch (RGB). We also present a differential E(B-V)
reddening map and a fiducial sequence for the main sequence, subgiant branch
and red giant branch on the V/B-V CMD for a selected region with uniform
reddening. Based on a comparison with the M5 fiducial sequence we obtain a
reddening estimate of E(B-V)=0.41 mag towards M4, consistent with previous
determinations.Comment: 16 pages LaTeX, 14 PostScript figures, 5 tables, major revisions,
accepted to A
An Overview of the Rotational Behavior of Metal--Poor Stars
The present paper describes the behavior of the rotational velocity in
metal--poor stars ([Fe/H]<-0.5 dex) in different evolutionary stages, based on
Vsini values from the literature. Our sample is comprised of stars in the field
and some Galactic globular clusters, including stars on the main sequence, the
red giant branch (RGB), and the horizontal branch (HB). The metal--poor stars
are, mainly, slow rotators, and their Vsini distribution along the HR diagram
is quite homogeneous. Nevertheless, a few moderate to high values of Vsini are
found in stars located on the main sequence and on the HB. We show that the
overall distribution of Vsini values is basically independent of metallicity
for the stars in our sample. In particular, the fast-rotating main sequence
stars in our sample present similar rotation rates as their metal-rich
counterparts, suggesting that some of them may actually be fairly young, in
spite of their low metallicity, or else that at least some of them would be
better classified as blue straggler stars. We do not find significant evidence
of evolution in Vsini values as a function of position on the RGB; in
particular, we do not confirm previous suggestions that stars close to the RGB
tip rotate faster than their less evolved counterparts. While the presence of
fast rotators among moderately cool blue HB stars has been suggested to be due
to angular momentum transport from a stellar core that has retained significant
angular momentum during its prior evolution, we find that any such transport
mechanisms must likely operate very fast as the star arrives on the zero-age HB
(ZAHB), since we do not find a link between evolution off the ZAHB and Vsini
values.
We present an extensive tabulation of all quantities discussed in this paper,
including rotation velocities, temperatures, gravitieComment: 22 pages, 10 figure
- …