10 research outputs found

    Homozygosity mapping as a screening tool for the molecular diagnosis of hereditary skin diseases in consanguineous populations

    No full text
    Background The routine diagnosis of genodermatoses is significantly complicated by the fact that in this group of disorders, clinical manifestations may result from mutations in unrelated genes (genetic heterogeneity) and mutations in the same gene often lead to dissimilar clinical signs (phenotypic heterogeneity). Methods In this study, we applied the principles of homozygosity mapping as a screening method before formal mutational analysis in an attempt to facilitate the molecular diagnosis of genodermatoses in consanguineous families. The method was evaluated in a retrospective fashion in 4 families previously assessed with junctional epidermolysis bullosa and in a prospective manner in 11 families with congenital recessive ichthyosis. Results The method was found to be efficient in directing the molecular analysis to one of the 4 genes commonly involved in the pathogenesis of junctional epidermolysis bullosa or in identifying cases of congenital recessive ichthyosis caused by mutations in TGM1. We found that this diagnostic strategy results in a 5-fold decrease in the cost of mutation analysis. Limitations The proposed diagnostic strategy is applicable to consanguineous families only and, therefore, cannot be used in outbred populations. Conclusion Our results indicate that homozygosity mapping may serve as a useful adjunct in the molecular diagnosis of junctional epidermolysis bullosa or congenital recessive ichthyosis in inbred populations. This study emphasizes the usefulness in human genetics of diagnostic strategies tailored to the demographic features of target populations

    The “Minimum Information about an ENvironmental Sequence” (MIENS) specification

    Get PDF
    We present the Genomic Standards Consortium’s (GSC) “Minimum Information about an ENvironmental Sequence” (MIENS) standard for describing marker genes. Adoption of MIENS will enhance our ability to analyze natural genetic diversity across the Tree of Life as it is currently being documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biospher

    Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications

    No full text
    Here we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences--the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The 'environmental packages' apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we present the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere

    Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications

    No full text
    Here we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences—the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The 'environmental packages' apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we present the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere

    Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications

    Get PDF
    Here we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences—the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The 'environmental packages' apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we present the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere
    corecore