612 research outputs found

    Probing axion-like particles with the ultraviolet photon polarization from active galactic nuclei in radio galaxies

    Full text link
    The mixing of photons with axion-like particles (ALPs) in the large-scale magnetic field BB changes the polarization angle of a linearly polarized photon beam from active galactic nuclei in radio galaxies as it propagates over cosmological distances. Using available ultraviolet polarization data concerning these sources we derive a new bound on the product of the photon-ALP coupling gaγg_{a\gamma} times BB. We find gaγB1011g_{a\gamma} B \lesssim 10^{-11} GeV1^{-1} nG for ultralight ALPs with ma1015m_a \lesssim 10^{-15} eV. We compare our new bound with the ones present in the literature and we comment about possible improvements with observations of more sources.Comment: v2: one typo corrected. Added a few comments, matches published versio

    Revisiting cosmological bounds on radiative neutrino lifetime

    Full text link
    Neutrino oscillation experiments and direct bounds on absolute masses constrain neutrino mass differences to fall into the microwave energy range, for most of the allowed parameter space. As a consequence of these recent phenomenological advances, older constraints on radiative neutrino decays based on diffuse background radiations and assuming strongly hierarchical masses in the eV range are now outdated. We thus derive new bounds on the radiative neutrino lifetime using the high precision cosmic microwave background spectral data collected by the Far Infrared Absolute Spectrophotometer instrument on board of Cosmic Background Explorer. The lower bound on the lifetime is between a few x 10^19 s and 5 x 10^20 s, depending on the neutrino mass ordering and on the absolute mass scale. However, due to phase space limitations, the upper bound in terms of the effective magnetic moment mediating the decay is not better than ~ 10^-8 Bohr magnetons. We also comment about possible improvements of these limits, by means of recent diffuse infrared photon background data. We compare these bounds with pre-existing limits coming from laboratory or astrophysical arguments. We emphasize the complementarity of our results with others available in the literature.Comment: 7 pages, 3 figures. Minor changes in the text, few references added. Matches the published versio

    Conversion of TeV photons in realistic extragalactic magnetic field

    Get PDF
    13th Patras Workshop on Axions, WIMPs and WISPs, Patras 2017, Thessaloniki, Greece, 15 May 2017 - 19 May 2017; Hamburg : Verlag Deutsches Elektronen-Synchrotron, DESY-PROC, (2018). doi:10.3204/DESY-PROC-2017-0

    Stochastic conversions of TeV photons into axion-like particles in extragalactic magnetic fields

    Get PDF
    Very-high energy photons emitted by distant cosmic sources are absorbed on the extragalactic background light (EBL) during their propagation. This effect can be characterized in terms of a photon transfer function at Earth. The presence of extragalactic magnetic fields could also induce conversions between very high-energy photons and hypothetical axion-like particles (ALPs). The turbulent structure of the extragalactic magnetic fields would produce a stochastic behaviour in these conversions, leading to a statistical distribution of the photon transfer functions for the different realizations of the random magnetic fields. To characterize this effect, we derive new equations to calculate the mean and the variance of this distribution. We find that, in presence of ALP conversions, the photon transfer functions on different lines of sight could have relevant deviations with respect to the mean value, producing both an enhancement or a suppression in the observable photon flux with respect to the expectations with only absorption. As a consequence, the most striking signature of the mixing with ALPs would be a reconstructed EBL density from TeV photon observations which appears to vary over different directions of the sky: consistent with standard expectations in some regions, but inconsistent in others.Comment: v2: 22 pages, 5 eps figures. Minor changes. A reference added. Matches the version published on JCA

    Food Selectivity in Children with Autism: Guidelines for Assessment and Clinical Interventions

    Get PDF
    Autisms Spectrum Disorders (ASD) are characterized by core symptoms (social communication and restricted and repetitive behaviors) and related comorbidities, including sensory anomalies, feeding issues, and challenging behaviors. Children with ASD experience significantly more feeding problems than their peers. In fact, parents and clinicians have to manage daily the burden of various dysfunctional behaviors of children at mealtimes (food refusal, limited variety of food, single food intake, or liquid diet). These dysfunctional behaviors at mealtime depend on different factors that are either medical/sensorial or behavioral. Consequently, a correct assessment is necessary in order to program an effective clinical intervention. The aim of this study is to provide clinicians with a guideline regarding food selectivity concerning possible explanations of the phenomenon, along with a direct/indirect assessment gathering detailed and useful information about target feeding behaviors. Finally, a description of evidence-based sensorial and behavioral strategies useful also for parent-mediated intervention is reported addressing food selectivity in children with ASD

    Mirizzi syndrome associated with hepatic artery pseudoaneurysm: a case report.

    Get PDF
    INTRODUCTION: This is the first case report of Mirizzi syndrome associated with hepatic artery pseudoaneurysm. CASE PRESENTATION: A 54-year-old man presented with painful obstructive jaundice and weight loss. Computed tomography showed a hilar mass in the liver. Following an episode of haemobilia, angiography demonstrated a pseudoaneurysm of a branch of the right hepatic artery that was embolised. At surgery, a gallstone causing Mirizzi type II syndrome was found to be responsible for the biliary obstruction and a necrotic inflammatory mass and haematoma were found to be extending into the liver. The mass was debrided and drained, the obstructing stones removed and the bile duct drained with a t-tube. The patient made a full recovery. CONCLUSION: This case highlights another situation where there may be difficulty in differentiating Mirizzi syndrome from biliary tract cancer.Published versio

    New cosmological mass limit on thermal relic axions

    Get PDF
    Observations of the cosmological large-scale structure provide well-established neutrino mass limits. We extend this argument to thermal relic axions. We calculate the axion thermal freeze-out temperature and thus their cosmological abundance on the basis of their interaction with pions. For hadronic axions we find a new mass limit ma<1.05m_a<1.05 eV (95% CL), corresponding to a limit on the axion decay constant of fa>5.7×106f_a>5.7\times 10^6 GeV. For other models this constraint is significantly weakened only if the axion-pion coupling is strongly suppressed. For comparison we note that the same approach leads to mν<0.65\sum m_\nu<0.65 eV (95% CL) for neutrinos.Comment: (17 pages, 12 eps figures

    Flavour-dependent radiative correction to neutrino-neutrino refraction

    Full text link
    In the framework of the Standard Model we calculate the flavour non-universal correction for neutrino refraction in a neutrino background and verify a similar previous result for the case of ordinary-matter background. The dominant term arises at loop level and involves tau leptons circulating in the loop. These O(G_F m_tau^2) corrections to the tree-level potential provide the dominant refractive difference between nu_mu and nu_tau unless the medium contains mu or tau leptons. Our results affect the flavour evolution of dense neutrino gases and may be of interest for collective three-flavour oscillations of supernova neutrinos. We spell out explicitly how these non-universal neutrino-neutrino interactions enter the flavour oscillation equations.Comment: 15 pages, 6 figures; updated reference lis

    Tailoring the thermal conductivity of rubber nanocomposites by inorganic systems: Opportunities and challenges for their application in tires formulation

    Get PDF
    The development of effective thermally conductive rubber nanocomposites for heat management represents a tricky point for several modern technologies, ranging from electronic devices to the tire industry. Since rubber materials generally exhibit poor thermal transfer, the addition of high loadings of different carbon‐based or inorganic thermally conductive fillers is mandatory to achieve satisfactory heat dissipation performance. However, this dramatically alters the mechanical behavior of the final materials, representing a real limitation to their application. Moreover, upon fillers’ incorporation into the polymer matrix, interfacial thermal resistance arises due to differences between the phonon spectra and scattering at the hybrid interface between the phases. Thus, a suitable filler functionalization is required to avoid discontinuities in the thermal transfer. In this challenging scenario, the present review aims at summarizing the most recent efforts to improve the thermal conductivity of rubber nanocomposites by exploiting, in particular, inorganic and hybrid filler systems, focusing on those that may guarantee a viable transfer of lab-scale formulations to technological applicable solutions. The intrinsic relationship among the filler’s loading, structure, morphology, and interfacial features and the heat transfer in the rubber matrix will be explored in depth, with the ambition of providing some methodological tools for a more profitable design of thermally conductive rubber nanocomposites, especially those for the formulation of tires

    Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles

    Full text link
    We revise the bound from the supernova SN1987A on the coupling of ultralight axion-like particles (ALPs) to photons. In a core-collapse supernova, ALPs would be emitted via the Primakoff process, and eventually convert into gamma rays in the magnetic field of the Milky Way. The lack of a gamma-ray signal in the GRS instrument of the SMM satellite in coincidence with the observation of the neutrinos emitted from SN1987A therefore provides a strong bound on their coupling to photons. Due to the large uncertainty associated with the current bound, we revise this argument, based on state-of-the-art physical inputs both for the supernova models and for the Milky-Way magnetic field. Furthermore, we provide major amendments, such as the consistent treatment of nucleon-degeneracy effects and of the reduction of the nuclear masses in the hot and dense nuclear medium of the supernova. With these improvements, we obtain a new upper limit on the photon-ALP coupling: g_{a\gamma} < 5.3 x 10^{-12} GeV^{-1}, for m_a < 4.4 x 10^{-10} eV, and we also give its dependence at larger ALP masses. Moreover, we discuss how much the Fermi-LAT satellite experiment could improve this bound, should a close-enough supernova explode in the near future.Comment: Accepted for publication in JCAP (December 22nd, 2014
    corecore