8 research outputs found

    Essential role of protein tyrosine phosphatase 1B in obesity-induced inflammation and peripheral insulin resistance during aging

    Full text link
    Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes (T2DM). In this study, we have evaluated the role of PTP1B in the development of aging-associated obesity, inflammation, and peripheral insulin resistance by assessing metabolic parameters at 3 and 16 months in PTP1B) ⁄ ) mice maintained on mixed genetic background (C57Bl ⁄ 6J · 129Sv ⁄ J). Whereas fat mass and adipocyte size were increased in wild-type control mice at 16 months, these parameters did not change with aging in PTP1B) ⁄ ) mice. Increased levels of pro-inflammatory cytokines, crown-like structures, and hypoxia-inducible factor (HIF)-1a wereobserved only in adipose tissue from 16-month-old wild-type mice. Similarly, islet hyperplasia and hyperinsulinemia were observed in wild-type mice with agingassociated obesity, but not in PTP1B) ⁄ ) animals. Leanness in 16- month-old PTP1B) ⁄ ) mice was associated with increased energy expenditure. Whole-body insulin sensitivity decreased in 16- month-old control mice; however, studies with the hyperinsulinemic– euglycemic clamp revealed that PTP1B deficiency prevented this obesity-related decreased peripheral insulin sensitivity. At a molecular level, PTP1B expression and enzymatic activity were upregulated in liver and muscle of 16-month-old wild-type mice as were the activation of stress kinases and the expression of p53. Conversely, insulin receptor-mediated Akt ⁄ Foxo1 signaling was attenuated in these aged control mice. Collectively, these data implicate PTP1B in the development of inflammation and insulin resistance associated with obesity during aging and suggest that inhibition of this phosphatase by therapeutic strategies might protect against age-dependentT2DMThis work was supported by grants from Ministerio de Ciencia e Innovación (Spain) SAF2009-08114 and (to A.M.V.), BFU2008- 04901-C03-02 and 03 (to M.R and J.M.C., respectively), BFU2008-01283 (to M.V), Comunidad de Madrid S2010/BMD- 2423 and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) (Instituto Salud Carlos III). CBMSO is recipient of institutional aid from Ramón Areces Foundation. We also acknowledge grants NIH-R01 DK080756, ADA 7-07-RA-80, and NIH U24-DK093000 (to J.K.K.) and UMass Mouse Phenotyping Center supported by UMass Diabetes and Endocrinology Research Center Grant (DK32520) and EFSD/Amylin Programme 2011 grant (to A.M.V.)

    The second-generation antipsychotic drug aripiprazole modulates the serotonergic system in pancreatic islets and induces beta cell dysfunction in female mice

    Get PDF
    [Aims/hypothesis]: Second-generation antipsychotic (SGA) drugs have been associated with the development of type 2 diabetes and the metabolic syndrome in patients with schizophrenia. In this study, we aimed to investigate the effects of two different SGA drugs, olanzapine and aripiprazole, on metabolic state and islet function and plasticity. [Methods]: We analysed the functional adaptation of beta cells in 12-week-old B6;129 female mice fed an olanzapine- or aripiprazole-supplemented diet (5.5–6.0 mg kg−1 day−1) for 6 months. Glucose and insulin tolerance tests, in vivo glucose-stimulated insulin secretion and indirect calorimetry were performed at the end of the study. The effects of SGAs on beta cell plasticity and islet serotonin levels were assessed by transcriptomic analysis and immunofluorescence. Insulin secretion was assessed by static incubations and Ca2+ fluxes by imaging techniques. [Results]: Treatment of female mice with olanzapine or aripiprazole for 6 months induced weight gain (p<0.01 and p<0.05, respectively), glucose intolerance (p<0.01) and impaired insulin secretion (p<0.05) vs mice fed a control chow diet. Aripiprazole, but not olanzapine, induced serotonin production in beta cells vs controls, likely by increasing tryptophan hydroxylase 1 (TPH1) expression, and inhibited Ca2+ flux. Of note, aripiprazole increased beta cell size (p<0.05) and mass (p<0.01) vs mice fed a control chow diet, along with activation of mechanistic target of rapamycin complex 1 (mTORC1)/S6 signalling, without preventing beta cell dysfunction. [Conclusions/interpretation]: Both SGAs induced weight gain and beta cell dysfunction, leading to glucose intolerance; however, aripiprazole had a more potent effect in terms of metabolic alterations, which was likely a result of its ability to modulate the serotonergic system. The deleterious metabolic effects of SGAs on islet function should be considered while treating patients as these drugs may increase the risk for development of the metabolic syndrome and diabetes.This work was funded by H2020 Marie Sklodowska-Curie ITN-TREATMENT (Grant Agreement 721236, European Commission). We also acknowledge grants RTI2018-094052-B-100/ AEI/10.13039/501100011033 (Ministerio de Ciencia e Innovación y Fondo Europeo de Desarrollo Regional [FEDER]) and S2017/BMD-3684 (Comunidad de Madrid, Spain), and grants from Fundación Ramón Areces (Spain) and CIBERDEM (ISCIII, Spain)

    GRK2 regulates GLP-1R-mediated early phase insulin secretion in vivo

    Get PDF
    BACKGROUND: Insulin secretion from the pancreatic β-cell is finely modulated by different signals to allow an adequate control of glucose homeostasis. Incretin hormones such as glucagon-like peptide-1 (GLP-1) act as key physiological potentiators of insulin release through binding to the G protein-coupled receptor GLP-1R. Another key regulator of insulin signaling is the Ser/Thr kinase G protein-coupled receptor kinase 2 (GRK2). However, whether GRK2 affects insulin secretion or if GRK2 can control incretin actions in vivo remains to be analyzed. RESULTS: Using GRK2 hemizygous mice, isolated pancreatic islets, and model β-cell lines, we have uncovered a relevant physiological role for GRK2 as a regulator of incretin-mediated insulin secretion in vivo. Feeding, oral glucose gavage, or administration of GLP-1R agonists in animals with reduced GRK2 levels (GRK2+/- mice) resulted in enhanced early phase insulin release without affecting late phase secretion. In contrast, intraperitoneal glucose-induced insulin release was not affected. This effect was recapitulated in isolated islets and correlated with the increased size or priming efficacy of the readily releasable pool (RRP) of insulin granules that was observed in GRK2+/- mice. Using nanoBRET in β-cell lines, we found that stimulation of GLP-1R promoted GRK2 association to this receptor and that GRK2 protein and kinase activity were required for subsequent β-arrestin recruitment. CONCLUSIONS: Overall, our data suggest that GRK2 is an important negative modulator of GLP-1R-mediated insulin secretion and that GRK2-interfering strategies may favor β-cell insulin secretion specifically during the early phase, an effect that may carry interesting therapeutic applications

    Essential role of protein tyrosine phosphatase 1B in obesity-induced inflammation and peripheral insulin resistance during aging

    Get PDF
    El pdf del artículo es el manuscrito de autor.-- et al.Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes (T2DM). In this study, we have evaluated the role of PTP1B in the development of aging-associated obesity, inflammation, and peripheral insulin resistance by assessing metabolic parameters at 3 and 16months in PTP1B -/- mice maintained on mixed genetic background (C57Bl/6J×129Sv/J). Whereas fat mass and adipocyte size were increased in wild-type control mice at 16months, these parameters did not change with aging in PTP1B -/- mice. Increased levels of pro-inflammatory cytokines, crown-like structures, and hypoxia-inducible factor (HIF)-1α were observed only in adipose tissue from 16-month-old wild-type mice. Similarly, islet hyperplasia and hyperinsulinemia were observed in wild-type mice with aging-associated obesity, but not in PTP1B -/- animals. Leanness in 16-month-old PTP1B -/- mice was associated with increased energy expenditure. Whole-body insulin sensitivity decreased in 16-month-old control mice; however, studies with the hyperinsulinemic-euglycemic clamp revealed that PTP1B deficiency prevented this obesity-related decreased peripheral insulin sensitivity. At a molecular level, PTP1B expression and enzymatic activity were up-regulated in liver and muscle of 16-month-old wild-type mice as were the activation of stress kinases and the expression of p53. Conversely, insulin receptor-mediated Akt/Foxo1 signaling was attenuated in these aged control mice. Collectively, these data implicate PTP1B in the development of inflammation and insulin resistance associated with obesity during aging and suggest that inhibition of this phosphatase by therapeutic strategies might protect against age-dependent T2DM. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.This work was supported by grants from Ministerio de Ciencia e Innovación (Spain) SAF2009-08114 and (to A.M.V.), BFU2008-04901-C03-02 and 03 (to M.R and J.M.C., respectively), BFU2008-01283 (to M.V), Comunidad de Madrid S2010/BMD-2423 and Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) (Instituto Salud Carlos III). CBMSO is recipient of institutional aid from Ramón Areces Foundation. We also acknowledge grants NIH-R01DK080756, ADA 7-07-RA-80, and NIH U24-DK093000 (to J.K.K.) and UMass Mouse Phenotyping Center supported by UMass Diabetes and Endocrinology Research Center Grant (DK32520) and EFSD/Amylin Programme 2011 grant (to A.M.V.).Peer Reviewe

    Essential role of protein tyrosine phosphatase 1B in the development of age-related sencescence, inflammation and insulin resistance

    No full text
    Trabajo presentado al XI Symposium on Insulin Receptors celebrado en Nápoles (Italia), del 28 de Junio al 30 de Junio de 2010Peer reviewe
    corecore