497 research outputs found

    Hospital preparedness for foreign patients : A postal survey of 97 public hospitals in Japan

    Full text link
    研究報

    Language neutrality of the LLAMA test explored: the case of agglutinative languages and multiple writing systems

    Get PDF
    The ability to learn a foreign language, language aptitude, is known to differ between individuals. To better understand second-language learning, language aptitude tests, tapping into the different components of second-language learning aptitude, are widely used. For valid conclusions on comparisons of learners with different language backgrounds, it is crucial that such tests be language neutral. Several studies have investigated the language neutrality of the freely available LLAMA tests (Granena, 2013; Rogers et al., 2016, 2017). So far, comparing a number of L1 backgrounds, including those using different writing systems such as Arabic and Mandarin, no significant differences between participants have been found. However, until now, neither participants with agglutinative language backgrounds nor with first-language backgrounds that use multiple writing systems have been included. Therefore, this study selected participants from three different first-language backgrounds: Dutch (non-agglutinative, phonogram/Latin alphabet), Hungarian (agglutinative, phonogram/Latin alphabet), and Japanese (agglutinative, phonogram/syllabic alphabet and logogram/Japanese kanji). The participants performed three subsets of the LLAMA test. Significant differences between the groups were found on two of these tests: The ability to implicitly recognize sounds (LLAMA_D subtest) and inductive grammar learning ability (LLAMA_F), but no differences were found on vocabulary learning ability (LLAMA_B). Additionally, for LLAMA_B, the number of languages learnt was a significant covariate, confirming earlier findings that some subtests seem to be linked to language learning experience. We discuss the implications of our findings on the validity of the LLAMA_D and LLAMA_F subtests.Teaching and Teacher Learning (ICLON

    NMR and NQR parameters of ethanol crystal

    Full text link
    Electric field gradients and chemical shielding tensors of the stable monoclinic crystal phase of ethanol are computed. The projector-augmented wave (PAW) and gauge-including projector-augmented wave (GIPAW) models in the periodic plane-wave density functional theory are used. The crystal data from X-ray measurements, as well as the structures where either all atomic, or only hydrogen atom positions are optimized in the density functional theory are analyzed. These structural models are also studied by including the semi-empirical Van der Waals correction to the density functional theory. Infrared spectra of these five crystal models are calculated

    A role for Tbx5 in proepicardial cell migration during cardiogenesis

    Get PDF
    Transcriptional regulatory cascades during epicardial and coronary vascular development from proepicardial progenitor cells remain to be defined. We have used immunohistochemistry of human embryonic tissues to demonstrate that the TBX5 transcription factor is expressed not only in the myocardium, but also throughout the embryonic epicardium and coronary vasculature. TBX5 is not expressed in other human fetal vascular beds. Furthermore, immunohistochemical analyses of human embryonic tissues reveals that unlike their epicardial counterparts, delaminating epicardial-derived cells do not express TBX5 as they migrate through the subepicardium before undergoing epithelial-mesenchymal transformation required for coronary vasculogenesis. In the chick, Tbx5 is expressed in the embryonic proepicardial organ (PEO), which is composed of the epicardial and coronary vascular progenitor cells. Retrovirus-mediated overexpression of human TBX5 inhibits cell incorporation of infected proepicardial cells into the nascent chick epicardium and coronary vasculature. TBX5 overexpression as well as antisense-mediated knockdown of chick Tbx5 produce a cell-autonomous defect in the PEO that prevents proepicardial cell migration. Thus, both increasing and decreasing Tbx5 dosage impairs development of the proepicardium. Culture of explanted PEOs demonstrates that untreated chick proepicardial cells downregulate Tbx5 expression during cell migration. Therefore, we propose that Tbx5 participates in regulation of proepicardial cell migration, a critical event in the establishment of the epicardium and coronary vasculature

    The carboxyl terminus of myosin binding protein C (MyBP-C, C-protein) specifies incorporation into the A-band of striated muscle

    Get PDF
    Myosin binding protein-C (MyBP-C), also known as C-protein, is a major constituent of the thick filaments of vertebrate striated muscles. The protein, approximately 130 kDa, consists of a series of 10 globular motifs (numbered I to X) each of approximately 90-100 amino acids, bearing resemblance to the C2-set of immunoglobins (Ig C2) and to the fibronectin type III (FnIII) motifs. Using pure preparations of myosin and MyBP-C, it has been demonstrated that the major myosin binding domain of MyBP-C resides within the C-terminal Ig C2 motif (motif X). However, in the context of the in vivo thick filament, it is uncertain if the latter domain is sufficient to target MyBP-C correctly to the A-band or if other regions of the molecule are required for this process. To answer this question, cultures of skeletal muscle myoblasts were transfected with expression plasmids encoding seven truncation mutants of MyBP-C, and their targeting to the A-band investigated by immunofluorescence microscopy. To distinguish the recombinant proteins from endogenous MyBP-C, a myc epitope was inserted at each amino terminus. Recombinant MyBP-C exhibited an identical distribution in the sarcomere to that of native MyBP-C; i.e. it was found exclusively in the C-zone of the A-band. A mutant encoding the C-terminal 372 amino acids, but lacking motifs I-VI (termed delta 1-6), also targeted correctly to the A-band. This fragment, which is composed of two Ig C2 and two FnIII motifs, was the minimal protein fragment required for correct A-band incorporation. Larger amino-terminal deletions or deletion of motif X, the myosin binding domain, abolished all localization to the A-band. One construct (delta 10) lacking only motif X strongly inhibited myofibril assembly. We conclude that the myosin binding domain of MyBP-C, although essential, is not sufficient for correct incorporation into the A-band and that motifs VII to IX are required for this process. The data suggest a topological model in which MyBP-C is associated with the thick filament through its C terminus.NRC publication: N

    Lung surfactant in subacute pulmonary disease

    Get PDF
    Pulmonary surfactant is a surface active material composed of both lipids and proteins that is produced by alveolar type II pneumocytes. Abnormalities of surfactant in the immature lung or in the acutely inflamed mature lung are well described. However, in a variety of subacute diseases of the mature lung, abnormalities of lung surfactant may also be of importance. These diseases include chronic obstructive pulmonary disease, asthma, cystic fibrosis, interstitial lung disease, pneumonia, and alveolar proteinosis. Understanding of the mechanisms that disturb the lung surfactant system may lead to novel rational therapies for these diseases
    corecore