191 research outputs found

    Spectator detection for the measurement of proton neutron interactions at ANKE

    Get PDF
    A telescope of three silicon detectors has been installed close to the internal target position of the ANKE spectrometer, which is situated inside the ultra-high vacuum of the COSY-Juelich light-ion storage ring. The detection and identification of slow protons and deuterons emerging from a deuterium cluster-jet target thus becomes feasible. A good measurement of the energy and angle of such a spectator proton (p_sp) allows one to identify a reaction as having taken place on the neutron in the target and then to determine the kinematical variables of the ion-neutron system on an event-by-event basis over a range of c.m. energies. The system has been successfully tested under laboratory conditions. By measuring the spectator proton in the p d to p_sp d pi^0 reaction in coincidence with a fast deuteron in the ANKE Forward Detector, values of the p n to d pi^0 total cross-section have been deduced. Further applications of the telescope include the determination of the luminosity and beam polarisation which are required for several experiments.Comment: 16 pages, 9 figure

    First results of meteor radar lower thermosphere wind measurements at Dixon, Arctic (73.5゜N, 80゜E)

    Get PDF
    Results of simultaneous wind measurements by the identical meteor radars at Dixon (73.5°N, 80°E) and Obninsk (55°N, 37°E) are presented for the time interval from November 12, 1999 to July 31, 2000. A number of features were observed which require comprehensive investigation on the basis of long-term wind measurements in the high-latitude lower thermosphere. The observed semidiurnal tide phases at Dixon are close to those published for Troms0, providing some evidence for predominance of the migrating semidiurnal tide for semidiurnal oscillations at this latitude. Highly coherent oscillations in tidal amplitudes and prevailing winds were also revealed, as well as time intervals with non-significant semidiurnal tide during which oscillations with periods different from but close to 12 h were observed

    The summertime 12-h wind oscillation with zonal wavenumber <i>s</i> = 1 in the lower thermosphere over the South Pole

    No full text
    International audienceMeteor radar measurements of winds near 95 km in four azimuth directions from the geographic South Pole are analyzed to reveal characteristics of the 12-h oscillation with zonal wavenumber one (s=1). The wind measurements are confined to the periods from 19 January 1995 through 26 January 1996 and from 21 November 1996 through 27 January 1997. The 12-h s=1 oscillation is found to be a predominantly summertime phenomenon, and is replaced in winter by a spectrum of oscillations with periods between 6 and 11.5 h. Both summers are characterized by minimum amplitudes (5?10 ms?1) during early January and maxima (15?20 ms?1) in November and late January. For 10-day means of the 12-h oscillation, smooth evolutions of phase of order 4?6 h occur during the course of the summer. In addition, there is considerable day-to-day variability (±5?10 ms?1 in amplitude) with distinct periods (i.e., ~5 days and ~8 days) which suggests modulation by planetary-scale disturbances. A comparison of climatological data from Scott Base, Molodezhnaya, and Mawson stations suggests that the 12-h oscillation near 78°S is s=1, but that at 68°S there is probably a mixture between s=1 and other zonal wavenumber oscillations (most probably s=2). The mechanism responsible for the existence of the 12-h s=1 oscillation has not yet been identified. Possible origins discussed herein include in situ excitation, nonlinear interaction between the migrating semidiurnal tide and a stationary s=1 feature, and thermal excitation in the troposphere

    Intradiurnal wind variations observed in the lower thermosphere over the South Pole

    Get PDF

    Transient eastward-propagating long-period waves observed over the South Pole

    Get PDF

    High- and mid-latitude quasi-2-day waves observed simultaneouslyby four meteor radars during summer 2000

    No full text
    International audienceResults from the analysis of MLT wind measurements at Dixon (73.5°N, 80°E), Esrange (68°N, 21°E), Castle Eaton (UK) (53°N, 2°W), and Obninsk (55°N, 37°E) during summer 2000 are presented in this paper. Using S-transform or wavelet analysis, quasi-two-day waves (QTDWs) are shown to appear simultaneously at high- and mid-latitudes and reveal themselves as several bursts of wave activity. At first this activity is preceded by a 51?53h wave with S=3 observed mainly at mid-latitudes. After a short recess (or quiet time interval for about 10 days near day 205), we observe a regular sequence of three bursts, the strongest of them corresponding to a QTDW with a period of 47?48h and S=4 at mid-altitudes. We hypothesize that these three bursts may be the result of constructive and destructive interference between several spectral components: a 47?48h component with S=4; a 60-h component with S=3; and a 80-h component with S=2. The magnitudes of the lower (higher) zonal wave-number components increase (decrease) with increasing latitude. The S-transform or wavelet analysis indicates when these spectral components create the wave activity bursts and gives a range of zonal wave numbers for observed bursts from about 4 to about 2 for mid- and high-latitudes. The main spectral component at Dixon and Esrange latitudes is the 60-h oscillation with S=3. The zonal wave numbers and frequencies of the observed spectral components hint at the possible occurrence of the nonlinear interaction between the primary QTDWs and other planetary waves. Using a simple 3-D nonlinear numerical model, we attempt to simulate some of the observed features and to explain them as a consequence of the nonlinear interaction between the primary 47?48h and the 9?10day waves, and the resulting linear superposition of primary and secondary waves. In addition to the QTDW bursts, we also infer forcing of the 4-day wave with S=2 and the 6?7day wave with S=1, possibly arising from nonlinear decoupling of the 60-h wave with S=3. The starting mechanism for this decoupling is the Rossby wave instability (e.g. Baines, 1976). This result is consistent with the day-to-day wind variability during the observed QTDW events. An interesting feature of the final stage of the observed QTDW activity in summer 2000 is the occurrence of strong 4?5 day waves with S=3. Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides; general or miscellaneous

    Predicting the Amplitude of a Solar Cycle Using the North-South Asymmetry in the Previous Cycle: II. An Improved Prediction for Solar Cycle~24

    Full text link
    Recently, using Greenwich and Solar Optical Observing Network sunspot group data during the period 1874-2006, (Javaraiah, MNRAS, 377, L34, 2007: Paper I), has found that: (1) the sum of the areas of the sunspot groups in 0-10 deg latitude interval of the Sun's northern hemisphere and in the time-interval of -1.35 year to +2.15 year from the time of the preceding minimum of a solar cycle n correlates well (corr. coeff. r=0.947) with the amplitude (maximum of the smoothed monthly sunspot number) of the next cycle n+1. (2) The sum of the areas of the spot groups in 0-10 deg latitude interval of the southern hemisphere and in the time-interval of 1.0 year to 1.75 year just after the time of the maximum of the cycle n correlates very well (r=0.966) with the amplitude of cycle n+1. Using these relations, (1) and (2), the values 112 + or - 13 and 74 + or -10, respectively, were predicted in Paper I for the amplitude of the upcoming cycle 24. Here we found that in case of (1), the north-south asymmetry in the area sum of a cycle n also has a relationship, say (3), with the amplitude of cycle n+1, which is similar to (1) but more statistically significant (r=0.968) like (2). By using (3) it is possible to predict the amplitude of a cycle with a better accuracy by about 13 years in advance, and we get 103 + or -10 for the amplitude of the upcoming cycle 24. However, we found a similar but a more statistically significant (r=0.983) relationship, say (4), by using the sum of the area sum used in (2) and the north-south difference used in (3). By using (4) it is possible to predict the amplitude of a cycle by about 9 years in advance with a high accuracy and we get 87 + or - 7 for the amplitude of cycle 24.Comment: 21 pages, 7 figures, Published in Solar Physics 252, 419-439 (2008

    Quality of colonoscopy in an emerging country: A prospective, multicentre study in Russia

    Get PDF
    Background: The quality of colonoscopy has been related to a higher risk of interval cancer, and this issue has been addressed extensively in developed countries. The aim of our study was to explore the main quality indicators of colonoscopy in a large emerging country. Methods: Consecutive patients referred for colonoscopy in 14 centres were prospectively included between July and October 2014. Before colonoscopy, several clinical and demographic variables were collected. Main quality indicators (i.e. caecal intubation rate, (advanced) adenoma detection rate, rate of adequate cleansing and sedation) were collected. Data were analysed at per patient and per centre level (only for those with at least 100 cases). Factors associated with caecal intubation rate and adenoma detection rate were explored at multivariate analysis. Results: A total of 8829 (males: 35%; mean age: 57 + 14 years) patients were included, with 11 centres enrolling at least 100 patients. Screening (including non-alarm symptoms) accounted for 59% (5188/8829) of the indications. Sedation and split preparation were used in 26% (2294/8829) and 25% (2187/8829) of the patients. Caecal intubation was achieved in 7616 patients (86%), and it was ≥85% in 8/11 (73%) centres. Adenoma detection rate was 18% (1550/8829), and it was higher than 20% in five (45%) centres, whilst it was lower than 10% in four (33%) centres. At multivariate analysis, age (OR: 1.020, 95% CI: 1.015–1.024), male sex (OR: 1.2, 95% CI: 1.1–1.3), alarm symptoms (OR: 1.8, 95% CI: 1.7–2), split preparation (OR: 1.4, 95% CI: 1.2–1.6), caecal intubation rate (OR: 1.6, 95% CI: 1.3–1.9) and withdrawal time measurement (OR: 1.2, 95% CI: 1.6–2.1) were predictors of a higher adenoma detection rate, while adequate preparation (OR: 3.4: 95% CI: 2.9–3.9) and sedation (OR: 1.3; 95% CI: 1.1–1.6) were the strongest predictors of caecal intubation rate. Conclusions: According to our study, there is a substantial intercentre variability in the main quality indicators. Overall, the caecal intubation rate appears to be acceptable in most centres, whilst the overall level of adenoma detection appears low, with less than half of the centres being higher than 20%. Educational and quality assurance programs, including higher rates of sedation and split regimen of preparation, may be necessary to increase the key quality indicators
    corecore