281 research outputs found

    Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen species

    Get PDF
    Background: Metals including iron, copper and zinc are essential for physiological processes yet can be toxic at high concentrations. However the role of these metals in the progression of cancer is not well defined. Here we study the anti-tumor activity of the metal chelator, TPEN, and define its mechanism of action.Methods: Multiple approaches were employed, including cell viability, cell cycle analysis, multiple measurements of apoptosis, and mitochondrial function. In addition we measured cellular metal contents and employed EPR to record redox cycling of TPEN-metal complexes. Mouse xenografts were also performed to test the efficacy of TPEN in vivo.Results: We show that metal chelation using TPEN (5μM) selectively induces cell death in HCT116 colon cancer cells without affecting the viability of non-cancerous colon or intestinal cells. Cell death was associated with increased levels of reactive oxygen species (ROS) and was inhibited by antioxidants and by prior chelation of copper. Interestingly, HCT116 cells accumulate copper to 7-folds higher levels than normal colon cells, and the TPEN-copper complex engages in redox cycling to generate hydroxyl radicals. Consistently, TPEN exhibits robust anti-tumor activity in vivo in colon cancer mouse xenografts.Conclusion: Our data show that TPEN induces cell death by chelating copper to produce TPEN-copper complexes that engage in redox cycling to selectively eliminate colon cancer cells. © 2014 Fatfat et al.; licensee BioMed Central Ltd

    Sanguinarine Induces Apoptosis Pathway in Multiple Myeloma Cell Lines via Inhibition of the JaK2/STAT3 Signaling.

    Get PDF
    Sanguinarine (SNG), a benzophenanthridine alkaloid, has displayed various anticancer abilities in several vivo and studies. However, the anticancer potential of SNG is yet to be established in multiple myeloma (MM), a mostly incurable malignancy of plasma cells. In this study, we aimed to investigate the potential anti-proliferative and pro-apoptotic activities of SNG in a panel of MM cell lines (U266, IM9, MM1S, and RPMI-8226). SNG treatment of MM cells resulted in a dose-dependent decrease in cell viability through mitochondrial membrane potential loss and activation of caspase 3, 9, and cleavage of PARP. Pre-treatment of MM cells with a universal caspase inhibitor, Z-VAD-FMK, prevented SNG mediated loss of cell viability, apoptosis, and caspase activation, confirming that SNG-mediated apoptosis is caspase-dependent. The SNG-mediated apoptosis appears to be resulted from suppression of the constitutively active STAT3 with a concomitant increase in expression of protein tyrosine phosphatase (SHP-1). SNG treatment of MM cells leads to down-regulation of the anti-apoptotic proteins including cyclin D, Bcl-2, Bclxl, and XIAP. In addition, it also upregulates pro-apoptotic protein, Bax. SNG mediated cellular DNA damage in MM cell lines by induction of oxidative stress through the generation of reactive oxygen species and depletion of glutathione. Finally, the subtoxic concentration of SNG enhanced the cytotoxic effects of anticancer drugs bortezomib (BTZ) by suppressing the viability of MM cells via induction of caspase-mediated apoptosis. Altogether our findings demonstrate that SNG induces mitochondrial and caspase-dependent apoptosis, generates oxidative stress, and suppresses MM cell lines proliferation. In addition, co-treatment of MM cell lines with sub-toxic doses of SNG and BTZ potentiated the cytotoxic activity. These results would suggest that SNG could be developed into therapeutic agent either alone or in combination with other anticancer drugs in MM

    Nutrition rehabilitation of undernourished children utilizing Spiruline and Misola

    Get PDF
    BACKGROUND: Malnutrition constitutes a public health problem throughout the world and particularly in developing countries. AIMS: The objective of the study is to assess the impact of an elementary integrator composed of Spiruline (Spirulina platensis) and Misola (millet, soja, peanut) produced at the Centre Medical St Camille (CMSC) of Ouagadougou, Burkina Faso, on the nutritional status of undernourished children. MATERIALS AND METHODS: 550 undernourished children of less than 5 years old were enrolled in this study, 455 showed severe marasma, 57 marasma of medium severity and 38 kwashiorkor plus marasma. We divided the children randomly into four groups: 170 were given Misola (731 ± 7 kcal/day), 170 were given Spiruline plus traditional meals (748 ± 6 kcal/day), 170 were given Spiruline plus Misola (767 ± 5 kcal/day). Forty children received only traditional meals (722 ± 8 kcal/day) and functioned as the control group. The duration of this study was eight weeks. RESULTS AND DISCUSSION: Anthropometrics and haematological parameters allowed us to appreciate both the nutritional and biological evolution of these children. The rehabilitation with Spiruline plus Misola (this association gave an energy intake of 767 ± 5 kcal/day with a protein assumption of 33.3 ± 1.2 g a day), both greater than Misola or Spiruline alone, seems to correct weight loss more quickly. CONCLUSION: Our results indicate that Misola, Spiruline plus traditional meals or Spiruline plus Misola are all a good food supplement for undernourished children, but the rehabilitation by Spiruline plus Misola seems synergically favour the nutrition rehabilitation better than the simple addition of protein and energy intake

    Pesticide exposure and lymphohaematopoietic cancers: a case-control study in an agricultural region (Larissa, Thessaly, Greece)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The causality of lymphohaematopoietic cancers (LHC) is multifactorial and studies investigating the association between chemical exposure and LHC have produced variable results. The aim of this study was to investigate the relationships between exposure to pesticides and LHC in an agricultural region of Greece.</p> <p>Methods</p> <p>A structured questionnaire was employed in a hospital-based case control study to gather information on demographics, occupation, exposure to pesticides, agricultural practices, family and medical history and smoking. To control for confounders, backward conditional and multinomial logistic regression analyses were used. To assess the dose-response relationship between exposure and disease, the chi-square test for trend was used.</p> <p>Results</p> <p>Three hundred and fifty-four (354) histologically confirmed LHC cases diagnosed from 2004 to 2006 and 455 sex- and age-matched controls were included in the study. Pesticide exposure was associated with total LHC cases (OR 1.46, 95% CI 1.05-2.04), myelodysplastic syndrome (MDS) (OR 1.87, 95% CI 1.00-3.51) and leukaemia (OR 2.14, 95% CI 1.09-4.20). A dose-response pattern was observed for total LHC cases (P = 0.004), MDS (P = 0.024) and leukaemia (P = 0.002). Pesticide exposure was independently associated with total LHC cases (OR 1.41, 95% CI 1.00 - 2.00) and leukaemia (OR 2.05, 95% CI 1.02-4.12) after controlling for age, smoking and family history (cancers, LHC and immunological disorders). Smoking during application of pesticides was strongly associated with total LHC cases (OR 3.29, 95% CI 1.81-5.98), MDS (OR 3.67, 95% CI 1.18-12.11), leukaemia (OR 10.15, 95% CI 2.15-65.69) and lymphoma (OR 2.72, 95% CI 1.02-8.00). This association was even stronger for total LHC cases (OR 18.18, 95% CI 2.38-381.17) when eating simultaneously with pesticide application.</p> <p>Conclusions</p> <p>Lymphohaematopoietic cancers were associated with pesticide exposure after controlling for confounders. Smoking and eating during pesticide application were identified as modifying factors increasing the risk for LHC. The poor pesticide work practices identified during this study underline the need for educational campaigns for farmers.</p

    Nutritional status and functional capacity of hospitalized elderly

    Get PDF
    Background: The nutritional status of the aging individual results from a complex interaction between personal and environmental factors. A disease influences and is influenced by the nutritional status and the functional capacity of the individual. We asses the relationship between nutritional status and indicators of functional capacity among recently hospitalized elderly in a general hospital.Methods: A cross-sectional study was done with 240 elderly (women, n = 127 and men, n = 113) hospitalized in a hospital that provides care for the public and private healthcare systems. The nutritional status was classified by the MNA (Mini Nutritional Assessment) into: malnourished, risk of malnutrition and without malnutrition (adequate). The functional autonomy indicators were obtained by the self-reported Instrumental Activity of Daily Living (IADL) and Activity of Daily Living (ADL) questionnaire. The chi-square test was used to compare the proportions and the level of significance was 5%.Results: Among the assessed elderly, 33.8% were classified as adequate regarding nutritional status; 37.1% were classified as being at risk of malnutrition and 29.1% were classified as malnourished. All the IADL and ADL variables assessed were significantly more deteriorated among the malnourished individuals. Among the ADL variables, eating partial (42.9%) or complete (12.9%) dependence was found in more than half of the malnourished elderly, in 13.4% of those at risk of malnutrition and in 2.5% of those without malnutrition.Conclusion: There is an interrelationship between the nutritional status of the elderly and reduced functional capacity

    Sanguinarine Induces Apoptosis Pathway in Multiple Myeloma Cell Lines via Inhibition of the JaK2/STAT3 Signaling

    Get PDF
    Sanguinarine (SNG), a benzophenanthridine alkaloid, has displayed various anticancer abilities in several vivo and in vitro studies. However, the anticancer potential of SNG is yet to be established in multiple myeloma (MM), a mostly incurable malignancy of plasma cells. In this study, we aimed to investigate the potential anti-proliferative and pro-apoptotic activities of SNG in a panel of MM cell lines (U266, IM9, MM1S, and RPMI-8226). SNG treatment of MM cells resulted in a dose-dependent decrease in cell viability through mitochondrial membrane potential loss and activation of caspase 3, 9, and cleavage of PARP. Pre-treatment of MM cells with a universal caspase inhibitor, Z-VAD-FMK, prevented SNG mediated loss of cell viability, apoptosis, and caspase activation, confirming that SNG-mediated apoptosis is caspase-dependent. The SNG-mediated apoptosis appears to be resulted from suppression of the constitutively active STAT3 with a concomitant increase in expression of protein tyrosine phosphatase (SHP-1). SNG treatment of MM cells leads to down-regulation of the anti-apoptotic proteins including cyclin D, Bcl-2, Bclxl, and XIAP. In addition, it also upregulates pro-apoptotic protein, Bax. SNG mediated cellular DNA damage in MM cell lines by induction of oxidative stress through the generation of reactive oxygen species and depletion of glutathione. Finally, the subtoxic concentration of SNG enhanced the cytotoxic effects of anticancer drugs bortezomib (BTZ) by suppressing the viability of MM cells via induction of caspase-mediated apoptosis. Altogether our findings demonstrate that SNG induces mitochondrial and caspase-dependent apoptosis, generates oxidative stress, and suppresses MM cell lines proliferation. In addition, co-treatment of MM cell lines with sub-toxic doses of SNG and BTZ potentiated the cytotoxic activity. These results would suggest that SNG could be developed into therapeutic agent either alone or in combination with other anticancer drugs in MM
    corecore