9 research outputs found

    Emergence of polarized opinions from free association networks

    Get PDF
    We developed a method that can identify polarized public opinions by finding modules in a network of statistically related free word associations. Associations to the cue “migrant” were collected from two independent and comprehensive samples in Hungary (N1 = 505, N2 = 505). The co-occurrence-based relations of the free word associations reflected emotional similarity, and the modules of the association network were validated with well-established measures. The positive pole of the associations was gathered around the concept of “Refugees” who need help, whereas the negative pole associated asylum seekers with “Violence”. The results were relatively consistent in the two independent samples. We demonstrated that analyzing the modular organization of association networks can be a tool for identifying the most important dimensions of public opinion about a relevant social issue without using predefined constructs

    Globally optimal closed-surface segmentation for connectomics

    No full text
    We address the problem of partitioning a volume image into a previously unknown number of segments, based on a likelihood of merging adjacent supervoxels. Towards this goal, we adapt a higher-order probabilistic graphical model that makes the duality between supervoxels and their joint faces explicit and ensures that merging decisions are consistent and surfaces of final segments are closed. First, we propose a practical cutting-plane approach to solve the MAP inference problem to global optimality despite its NP-hardness. Second, we apply this approach to challenging large-scale 3D segmentation problems for neural circuit reconstruction (Connectomics), demonstrating the advantage of this higher-order model over independent decisions and finite-order approximations
    corecore