184 research outputs found

    Debating big data: A literature review on realizing value from big data

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordBig data has been considered to be a breakthrough technological development over recent years. Notwithstanding, we have as yet limited understanding of how organizations translate its potential into actual social and economic value. We conduct an in-depth systematic review of IS literature on the topic and identify six debates central to how organizations realize value from big data, at different levels of analysis. Based on this review, we identify two socio-technical features of big data that influence value realization: portability and interconnectivity. We argue that, in practice, organizations need to continuously realign work practices, organizational models, and stakeholder interests in order to reap the benefits from big data. We synthesize the findings by means of an integrated model

    Promises of artificial intelligence in neuroradiology:a systematic technographic review

    Get PDF
    Purpose To conduct a systematic review of the possibilities of artificial intelligence (AI) in neuroradiology by performing an objective, systematic assessment of available applications. To analyse the potential impacts of AI applications on the work of neuroradiologists. Methods We identified AI applications offered on the market during the period 2017–2019. We systematically collected and structured information in a relational database and coded for the characteristics of the applications, their functionalities for the radiology workflow and their potential impacts in terms of ‘supporting’, ‘extending’ and ‘replacing’ radiology tasks. Results We identified 37 AI applications in the domain of neuroradiology from 27 vendors, together offering 111 functionalities. The majority of functionalities ‘support’ radiologists, especially for the detection and interpretation of image findings. The second-largest group of functionalities ‘extends’ the possibilities of radiologists by providing quantitative information about pathological findings. A small but noticeable portion of functionalities seek to ‘replace’ certain radiology tasks. Conclusion Artificial intelligence in neuroradiology is not only in the stage of development and testing but also available for clinical practice. The majority of functionalities support radiologists or extend their tasks. None of the applications can replace the entire radiology profession, but a few applications can do so for a limited set of tasks. Scientific validation of the AI products is more limited than the regulatory approval

    Facilitating the transition to an inverter dominated power system : experimental evaluation of a non-intrusive add-on predictive controller

    Get PDF
    The transition to an inverter-dominated power system is expected with the large-scale integration of distributed energy resources (DER). To improve the dynamic response of DERs already installed within such a system, a non-intrusive add-on controller referred to as SPAACE (set point automatic adjustment with correction enabled), has been proposed in the literature. Extensive simulation-based analysis and supporting mathematical foundations have helped establish its theoretical prevalence. This paper establishes the practical real-world relevance of SPAACE via a rigorous performance evaluation utilizing a high fidelity hardware-in-the-loop systems test bed. A comprehensive methodological approach to the evaluation with several practical measures has been undertaken and the performance of SPAACE subject to representative scenarios assessed. With the evaluation undertaken, the fundamental hypothesis of SPAACE for real-world applications has been proven, i.e., improvements in dynamic performance can be achieved without access to the internal controller. Furthermore, based on the quantitative analysis, observations, and recommendations are reported. These provide guidance for future potential users of the approach in their efforts to accelerate the transition to an inverter-dominated power system

    Evaluation of Emotional Intelligence and Job Satisfaction in Employees of Kashan Hospitals

    Get PDF
    Background: Job satisfaction and emotional intelligence are two important variables in organizational behavioral studies, and are key factors in promoting the efficiency of organizations. Objectives: The present study was conducted in order to determine the job satisfaction and emotional intelligence of employees of Kashan hospitals in 2011. Materials and Methods: This cross-sectional study was performed on 121 employees of Kashan hospitals who were selected using random stratified method. In this study, Bar-on emotional intelligence and job satisfaction questionnaires were used. The data were analyzed using statistical methods such as odds ratio, Chi-square and Fisher's exact test. Results: The majority of employees (76%) had moderate emotional intelligence while 88.2% of them had moderate job satisfaction. In this study, there were no significant relations between emotional intelligence and variables such as sex, education, and marital and job status (P > 0.05) but significant relations were found between the age and emotional intelligence (P = 0.01). Furthermore, there was no significant relation between job satisfaction and demographic variables. Moreover, no significant relation was found between the emotional intelligence and job satisfaction (P > 0.05). Conclusions: As the majority of the staff had average level of job satisfaction and emotional intelligence and others were lower than average, it seems necessary for authorities to explore the reasons for job dissatisfaction to prevent job burnout, depression and developing a sense of helplessness in the staff. It is also recommended to hold educational workshops for the staff especially who are younger than 40 years to promote their emotional intelligence

    Simultaneous Modeling of Young's Modulus, Yield Stress, and Rupture Strain of Gelatin/Cellulose Acetate Microfibrous/Nanofibrous Scaffolds Using RSM.

    Full text link
    Electrospinning is a promising method to fabricate bioengineered scaffolds, thanks to utilizing various types of biopolymers, flexible structures, and also the diversity of output properties. Mechanical properties are one of the major components of scaffold design to fabricate an efficacious artificial substitute for the natural extracellular matrix. Additionally, fiber orientations, as one of the scaffold structural parameters, could play a crucial role in the application of fabricated fibrous scaffolds. In this study, gelatin was used as a highly biocompatible polymer in blend with cellulose acetate (CA), a polysaccharide, to enhance the achievable range of mechanical characteristics to fabricated fibrous electrospun scaffolds. By altering input variables, such as polymers concentration, weight ratio, and mandrel rotation speed, scaffolds with various mechanical and morphological properties could be achieved. As expected, the electrospun scaffold with a higher mandrel rotation speed shows higher fiber alignment. A wide range of mechanical properties were gained through different values of polymer ratio and total concentration. A general improvement in mechanical strength was observed by increasing the concentration and CA content in the solution, but contradictory effects, such as high viscosity in more concentrated solutions, influenced the mechanical characteristics as well. A response surface method was applied on experimental results in order to describe a continuous variation of Young's modulus, yield stress, and strain at rupture. A full quadratic version of equations with the 95% confidence level was applied for the response modeling. This model would be an aid for engineers to adjust mandrel rotation speed, solution concentration, and gelatin/CA ratio to achieve desired mechanical and structural properties

    Load frequency control in variable inertia systems

    Get PDF
    Conventional load frequency control primarily relies on large synchronous generation units to ensure regulation of the system frequency. However, its performance deteriorates as the system parameters, including inertia and droop coefficients, deviate from original system design. This letter proposes an augmented load frequency control (ALFC) to ensure robust frequency regulation under diurnal variations in system parameters that are expected in the future, renewables-rich power system. The superior performance of ALFC is demonstrated by several case studies, and its stability is assessed by small-signal analysis

    Transient Monitoring Function–Based Fault Detection for Inverter-Interfaced Microgrids

    Get PDF

    A Thoroughgoing Design of a Rapid-cycle Microfluidic Droplet-based PCR Device to Amplify Rare DNA Strands

    Get PDF
    DNA is a molecule and assortment of fruitful information of organisms and a wide range of viruses. Polymerase chain reaction (PCR) is a process used to amplify DNA strands in order to generate millions of them and extract the applicable information. Although conventional methods for PCR are flourishing to a certain extent, they have such major drawbacks as contamination, high material consumption, and low-speed function. By the combination of PCR devices with the microfluidic approach and integrating them with droplet generation technology, the mentioned problems can be eliminated. In this study, a novel two-step rapid-cycle droplet-based PCR (dPCR) device, considering the design of microchannel and heat transfer system, has been presented. First, numerous studies have been conducted to select the proper droplet generator for the integration of the droplet generation with the PCR device. Then, with the careful attention to the requirements of a PCR device, the geometry of different zones of the PCR device has been, meticulously, designed. In the next and last step, the heat transfer system for the designed zones of the PCR device has been planned. Afterward, results are examined carefully which indicate that in a cycle of PCR, they are not any major discrepancies between the designed dPCR and the ideal one—the one that is intended to be created

    Efficacy of Cr-doped ZnO nanoparticles in removal of reactive black 5 dye from aqueous solutions in presence of solar radiation

    Get PDF
    Background and purpose: Dyes from textile industry are amongst the major pollutants of the environment that are harmful for both human health and the environment. Azo dyes constitute the largest and the most important class of commercial dyes, accounting for 50 of all commercial dyes. This study investigated the efficacy of Cr-doped ZnO nanoparticles in removal of reactive black 5 (RB5) dye from aquatic solutions in presence of solar radiation. Materials and methods: An experimental laboratory study was done by designing the surface-answer test. Cr-doped ZnO nanoparticles were synthesized using co-precipitation method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for characterization of the nanoparticles prepared. Effects of parameters such as pH, nanoparticle dosage, initial RB5 concentration, and contact time on the removal efficiency of RB5 were studied. The remaining concentration of RB5 was analyzed by UV/VIS spectrophotometer at a wavelength of 597 nm. Finally, the statistical analysis of the model was conducted by ANOVA. Results: Results showed that removal efficiency increased by increasing nanoparticle dosage and contact time. Also, we found that removal efficiency decreased by increasing the initial dye concentration and pH. The optimum condition for dye removal was obtained at pH 4, nanoparticle dosage of 1.75 g/L, initial dye content of 112.5 mg/L, and 75 min contact time. In this condition the efficiency removal and desirability were 75.41 and of 0.905, respectively. Conclusion: Removal of textile dyes was found to be quick and effective when using Cr-doped ZnO nanoparticles. Also, designing and performing the experiment (in low frequency) can help in optimizing the efficiency removal of pollutant from aqueous media. © 2016, Mazandaran University of Medical Sciences. All rights reserved
    corecore