1,649 research outputs found

    Cenozoic evolution of Neotethys and implications for the causes of plate motions

    Get PDF
    Africa-North America-Eurasia plate circuit rotations, combined with Red Sea rotations and new estimates of crustal shortening in Iran define the Cenozoic history of the Neotethyan ocean between Arabia and Eurasia. The new constraints indicate that Arabia-Eurasia convergence has been fairly constant at 2 to 3 cm/yr since 56 Ma with slowing of Africa-Eurasia motion to <1 cm/yr near 25 Ma, coeval with the opening of the Red Sea. Ocean closure occurred no later than 10 Ma, and could have occurred prior to this time only if a large amount of continental lithosphere was subducted, suggesting that slowing of Africa significantly predated the Arabia-Eurasia collision. These kinematics imply that Africa's disconnection with the negative buoyancy of the downgoing slab of lithosphere beneath southern Eurasia slowed its motion. The slow, steady rate of northward subduction since 56 Ma contrasts with strongly variable rates of magma production in the Urumieh-Dokhtar arc, implying magma production rate in continental arcs is not linked to subduction rate

    Classical-Wigner Phase Space Approximation to Cumulative Matrix Elements in Coherent Control

    Full text link
    The classical limit of the Wigner-Weyl representation is used to approximate products of bound-continuum matrix elements that are fundamental to many coherent control computations. The range of utility of the method is quantified through an examination of model problems, single-channel Na_2 dissociation and multi-arrangement channel photodissociation of CH_2IBr. Very good agreement with the exact quantum results is found for a wide range of system parameters.Comment: 17 pages, 12 figures, to appear in Journal of Chemical Physic

    Statics and dynamics of a cylindrical droplet under an external body force

    Full text link
    We study the rolling and sliding motion of droplets on a corrugated substrate by Molecular Dynamics simulations. Droplets are driven by an external body force (gravity) and we investigate the velocity profile and dissipation mechanisms in the steady state. The cylindrical geometry allows us to consider a large range of droplet sizes. The velocity of small droplets with a large contact angle is dominated by the friction at the substrate and the velocity of the center of mass scales like the square root of the droplet size. For large droplets or small contact angles, however, viscous dissipation of the flow inside the volume of the droplet dictates the center of mass velocity that scales linearly with the size. We derive a simple analytical description predicting the dependence of the center of mass velocity on droplet size and the slip length at the substrate. In the limit of vanishing droplet velocity we quantitatively compare our simulation results to the predictions and good agreement without adjustable parameters is found.Comment: Submitted to the Journal of Chemical Physic

    Dynamics of a Rigid Rod in a Glassy Medium

    Full text link
    We present simulations of the motion of a single rigid rod in a disordered static 2d-array of disk-like obstacles. The rotational, DRD_{\rm R}, and center-of-mass translational, DCMD_{\rm CM}, diffusion constants are calculated for a wide range of rod length LL and density of obstacles ρ\rho. It is found that DCMD_{\rm CM} follows the behavior predicted by kinetic theory for a hard disk with an effective radius R(L)R(L). A dynamic crossover is observed in DRD_{\rm R} for LL comparable to the typical distance between neighboring obstacles dnnd_{\rm nn}. Using arguments from kinetic theory and reptation, we rationalize the scaling laws, dynamic exponents, and prefactors observed for DRD_{\rm R}. In analogy with the enhanced translational diffusion observed in deeply supercooled liquids, the Stokes-Einstein-Debye relation is violated for L>0.6dnnL > 0.6d_{\rm nn}.Comment: 8 pages, 4 figures. Major changes. To be published in Europhysics Letter

    Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity

    Full text link
    We propose a new method, the Helfand-moment method, to compute the shear viscosity by equilibrium molecular dynamics in periodic systems. In this method, the shear viscosity is written as an Einstein-like relation in terms of the variance of the so-called Helfand moment. This quantity, is modified in order to satisfy systems with periodic boundary conditions usually considered in molecular dynamics. We calculate the shear viscosity in the Lennard-Jones fluid near the triple point thanks to this new technique. We show that the results of the Helfand-moment method are in excellent agreement with the results of the standard Green-Kubo method.Comment: Submitted to the Journal of Chemical Physic

    Calculations of canonical averages from the grand canonical ensemble

    Full text link
    Grand canonical and canonical ensembles become equivalent in the thermodynamic limit, but when the system size is finite the results obtained in the two ensembles deviate from each other. In many important cases, the canonical ensemble provides an appropriate physical description but it is often much easier to perform the calculations in the corresponding grand canonical ensemble. We present a method to compute averages in canonical ensemble based on calculations of the expectation values in grand canonical ensemble. The number of particles, which is fixed in the canonical ensemble, is not necessarily the same as the average number of particles in the grand canonical ensemble

    Quantum transport on small-world networks: A continuous-time quantum walk approach

    Full text link
    We consider the quantum mechanical transport of (coherent) excitons on small-world networks (SWN). The SWN are build from a one-dimensional ring of N nodes by randomly introducing B additional bonds between them. The exciton dynamics is modeled by continuous-time quantum walks and we evaluate numerically the ensemble averaged transition probability to reach any node of the network from the initially excited one. For sufficiently large B we find that the quantum mechanical transport through the SWN is, first, very fast, given that the limiting value of the transition probability is reached very quickly; second, that the transport does not lead to equipartition, given that on average the exciton is most likely to be found at the initial node.Comment: 8 pages, 8 figures (high quality figures available upon request

    Long wavelength structural anomalies in jammed systems

    Get PDF
    The structural properties of static, jammed packings of monodisperse spheres in the vicinity of the jamming transition are investigated using large-scale computer simulations. At small wavenumber kk, we argue that the anomalous behavior in the static structure factor, S(k)kS(k) \sim k, is consequential of an excess of low-frequency, collective excitations seen in the vibrational spectrum. This anomalous feature becomes more pronounced closest to the jamming transition, such that S(0)0S(0) \to 0 at the transition point. We introduce an appropriate dispersion relation that accounts for these phenomena that leads us to relate these structural features to characteristic length scales associated with the low-frequency vibrational modes of these systems. When the particles are frictional, this anomalous behavior is suppressed providing yet more evidence that jamming transitions of frictional spheres lie at lower packing fractions that that for frictionless spheres. These results suggest that the mechanical properties of jammed and glassy media may therefore be inferred from measurements of both the static and dynamical structure factors.Comment: 8 pages, 6 figure captions. Completely revised version to appear in Phys. Rev.

    Deterministic reaction models with power-law forces

    Full text link
    We study a one-dimensional particles system, in the overdamped limit, where nearest particles attract with a force inversely proportional to a power of their distance and coalesce upon encounter. The detailed shape of the distribution function for the gap between neighbouring particles serves to discriminate between different laws of attraction. We develop an exact Fokker-Planck approach for the infinite hierarchy of distribution functions for multiple adjacent gaps and solve it exactly, at the mean-field level, where correlations are ignored. The crucial role of correlations and their effect on the gap distribution function is explored both numerically and analytically. Finally, we analyse a random input of particles, which results in a stationary state where the effect of correlations is largely diminished

    On Calculation of Thermal Conductivity from Einstein Relation in Equilibrium MD

    Full text link
    In equilibrium molecular dynamics, Einstein relation can be used to calculate the thermal conductivity. This method is equivalent to Green-Kubo relation and it does not require a derivation of an analytical form for the heat current. However, it is not commonly used as Green-Kubo relationship. Its wide use is hindered by the lack of a proper definition for integrated heat current (energy moment) under periodic boundary conditions. In this paper, we developed an appropriate definition for integrated heat current to calculate thermal conductivity of solids under periodic conditions. We applied this method to solid argon and silicon based systems; compared and contrasted with the Green-Kubo approach.Comment: We updated this manuscript from second version by changing the title and abstract. This paper is submitted to J. Chem. Phy
    corecore