69 research outputs found

    Motor Affordance for Grasping a Handrail

    Get PDF
    Mere observation of objects around us can potentiate motor action by priming specific areas in the brain. This concept, referred to as the affordance effect, suggests that humans put viewed objects into motor terms automatically. Such automated linking of observations to action offers potential advantages to interact with our environment quickly and efficiently when producing goal-directed movements. One possible application of this affordance effect includes the rapid balance reactions needed to avoid a fall. In reactive balance control, movements must be extremely fast yet simultaneously appropriate for a given environment (e.g. quickly grasping a nearby handrail to avoid a fall). The present study was conducted to test if viewing a wall-mounted handrail – the type of handle commonly used to regain balance – results in activation of motor cortical networks

    Role of the mesoamygdaloid dopamine projection in emotional learning

    Get PDF
    Amygdala dopamine is crucially involved in the acquisition of Pavlovian associations, as measured via conditioned approach to the location of the unconditioned stimulus (US). However, learning begins before skeletomotor output, so this study assessed whether amygdala dopamine is also involved in earlier 'emotional' learning. A variant of the conditioned reinforcement (CR) procedure was validated where training was restricted to curtail the development of selective conditioned approach to the US location, and effects of amygdala dopamine manipulations before training or later CR testing assessed. Experiment 1a presented a light paired (CS+ group) or unpaired (CS- group) with a US. There were 1, 2 or 10 sessions, 4 trials per session. Then, the US was removed, and two novel levers presented. One lever (CR+) presented the light, and lever pressing was recorded. Experiment 1b also included a tone stimulus. Experiment 2 applied intra-amygdala R(+) 7-OH-DPAT (10 nmol/1.0 A mu l/side) before two training sessions (Experiment 2a) or a CR session (Experiment 2b). For Experiments 1a and 1b, the CS+ group preferred the CR+ lever across all sessions. Conditioned alcove approach during 1 or 2 training sessions or associated CR tests was low and nonspecific. In Experiment 2a, R(+) 7-OH-DPAT before training greatly diminished lever pressing during a subsequent CR test, preferentially on the CR+ lever. For Experiment 2b, R(+) 7-OH-DPAT infusions before the CR test also reduced lever pressing. Manipulations of amygdala dopamine impact the earliest stage of learning in which emotional reactions may be most prevalent

    Disorders of compulsivity: a common bias towards learning habits.

    Get PDF
    Why do we repeat choices that we know are bad for us? Decision making is characterized by the parallel engagement of two distinct systems, goal-directed and habitual, thought to arise from two computational learning mechanisms, model-based and model-free. The habitual system is a candidate source of pathological fixedness. Using a decision task that measures the contribution to learning of either mechanism, we show a bias towards model-free (habit) acquisition in disorders involving both natural (binge eating) and artificial (methamphetamine) rewards, and obsessive-compulsive disorder. This favoring of model-free learning may underlie the repetitive behaviors that ultimately dominate in these disorders. Further, we show that the habit formation bias is associated with lower gray matter volumes in caudate and medial orbitofrontal cortex. Our findings suggest that the dysfunction in a common neurocomputational mechanism may underlie diverse disorders involving compulsion.This study was funded by the WT fellowship grant for VV (093705/Z/ 10/Z) and Cambridge NIHR Biomedical Research Centre. VV and NAH are Wellcome Trust (WT) intermediate Clinical Fellows. YW is supported by the Fyssen Fondation and MRC Studentships. PD is supported by the Gatsby Charitable Foundation. JEG has received grants from the National Institute of Drug Abuse and the National Center for Responsible Gaming. TWR and BJS are supported on a WT Programme Grant (089589/Z/09/Z). The BCNI is supported by a WT and MRC grant.This is the final published version. It's also available from Molecular Psychiatry at http://www.nature.com/mp/journal/vaop/ncurrent/full/mp201444a.html

    Early adversity disrupts the adult use of aversive prediction errors to reduce fear in uncertainty

    No full text
    Early life adversity increases anxiety in adult rodents and primates, and increases the risk for developing post-traumatic disorder (PTSD) in humans. We hypothesized that early adversity impairs the use of learning signals – negative, aversive prediction errors – to reduce fear in uncertainty. To test this hypothesis, we gave adolescent rats a battery of adverse experiences then assessed adult performance in probabilistic Pavlovian fear conditioning and fear extinction. Rats were confronted with three cues associated with different probabilities of foot shock: one cue never predicted shock, another cue predicted shock with uncertainty, and a final cue always predicted shock. Control rats initially acquired fear to all cues, but rapidly reduced fear to the non-predictive and uncertain cues. Early adversity rats were slower to reduce fear to the non-predictive cue and never fully reduced fear to the uncertain cue. In extinction, all cues were presented in the absence of shock. Fear to the uncertain cue in discrimination, but not early adversity itself, predicted the reduction of fear in extinction. These results demonstrate early adversity impairs the use of negative, aversive prediction errors to reduce fear, especially in situations of uncertainty

    Motor Preparation for Compensatory Reach-to-Grasp Responses When Viewing a Wall-Mounted Safety Handle

    Get PDF
    The present study explored how motor cortical activity was influenced by visual perception of complex environments that either afforded or obstructed arm and leg reactions in young, healthy adults. Most importantly, we focused on compensatory balance reactions where the arms were required to regain stability following unexpected postural perturbation. Our first question was if motor cortical activity from the hand area automatically corresponds to the visual environment. Affordance-based priming of the motor system was assessed using single-pulse Transcranial Magnetic Stimulation (TMS) to determine if visual access to a wall-mounted support handle influenced corticospinal excitability. We evaluated if hand actions were automatically facilitated and/or suppressed by viewing an available handle within graspable range. Our second question was if the requirement for rapid movement to recover balance played a role in modulating any affordance effect in the hands. The goal was to disentangle motor demands related to postural threat from the impact of observation alone. For balance trials, a custom-built, lean and release apparatus was used to impose temporally unpredictable postural perturbations. In all balance trials, perturbations were of sufficient magnitude to evoke a compensatory change-in-support response; therefore, any recovery action needed to carefully take into account the affordances and constraints of the perceived environment to prevent a fall. Consistent with our first hypothesis, activity in an intrinsic hand muscle was increased when participants passively viewed a wall-mounted safety handle, in both seated and standing contexts. Contrary to our second hypothesis, this visual priming was absent when perturbations were imposed and the handle was needed to regain balance. Our results reveal that motor set is influenced by simply viewing objects that afford a grasp. We suggest that such preparation may provide an advantage when generating balance recovery actions that require quickly grasping a supportive handle. This priming effect likely competes with other task-dependent influences that regulate cortical motor output. Future studies should expand from limitations inherent with single-pulse TMS alone, to determine if vision of our surrounding world influences motor set in other contexts (e.g., intensified postural threat) and investigate if this priming corresponds to overt behavior
    • …
    corecore