1,710 research outputs found

    On steady poloidal and toroidal flows in tokamak plasmas

    Get PDF
    The effects of poloidal and toroidalflows on tokamakplasma equilibria are examined in the magnetohydrodynamic limit. “Transonic” poloidal flows of the order of the sound speed multiplied by the ratio of poloidal magnetic field to total field B₀/B can cause the (normally elliptic) Grad–Shafranov (GS) equation to become hyperbolic in part of the solution domain. It is pointed out that the range of poloidal flows for which the GS equation is hyperbolic increases with plasma beta and B₀/B, thereby complicating the problem of determining spherical tokamakplasma equilibria with transonic poloidal flows. It is demonstrated that the calculation of the hyperbolicity criterion can be easily modified when the assumption of isentropic flux surfaces is replaced with the more tokamak-relevant one of isothermal flux surfaces. On the basis of the latter assumption, a simple expression is obtained for the variation of density on a flux surface when poloidal and toroidalflows are simultaneously present. Combined with Thomson scattering measurements of density and temperature, this expression could be used to infer information on poloidal and toroidalflows on the high field side of a tokamakplasma, where direct measurements of flows are not generally possible. It is demonstrated that there are four possible solutions of the Bernoulli relation for the plasma density when the flux surfaces are assumed to be isothermal, corresponding to four distinct poloidal flow regimes. Finally, observations and first principles-based theoretical modeling of poloidal flows in tokamakplasmas are briefly reviewed and it is concluded that there is no clear evidence for the occurrence of supersonic poloidal flows.This work was jointly funded by the Australian Government through International Science Linkages Grant No. CG130047, the Australian National University, the United Kingdom Engineering and Physical Sciences Research Council, and by the European Communities under the contract of Association between EURATOM and CCFE

    Toroidal ripple transport of beam ions in the mega-ampère spherical tokamak

    Get PDF
    The transport of injected beam ions due to toroidalmagnetic field ripple in the mega-ampère spherical tokamak (MAST) is quantified using a full orbit particle tracking code, with collisional slowing-down and pitch-angle scattering by electrons and bulk ions taken into account. It is shown that the level of ripple losses is generally rather low, although it depends sensitively on the major radius of the outer midplane plasma edge; for typical values of this parameter in MAST plasmas, the reduction in beam heating power due specifically to ripple transport is less than 1%, and the ripple contribution to beam ion diffusivity is of the order of 0.1 m² s⁻¹ or less. It is concluded that ripple effects make only a small contribution to anomalous transport rates that have been invoked to account for measured neutron rates and plasma stored energies in some MAST discharges. Delayed (non-prompt) losses are shown to occur close to the outer midplane, suggesting that banana-drift diffusion is the most likely cause of the ripple-induced losses.This work was funded by the RCUK Energy Programme under Grant EP/I501045, by the Australian Research Council, and by the European Communities under the Contract of Association between EURATOM and CCFE

    A critical Mach number for electron injection in collisionless shocks

    Full text link
    Electron acceleration in collisionless shocks with arbitrary magnetic field orientations is discussed. It is shown that the injection of thermal electrons into diffusive shock acceleration process is achieved by an electron beam with a loss-cone in velocity space that is reflected back upstream from the shock through shock drift acceleration mechanism. The electron beam is able to excite whistler waves which can scatter the energetic electrons themselves when the Alfven Mach number of the shock is sufficiently high. A critical Mach number for the electron injection is obtained as a function of upstream parameters. The application to supernova remnant shocks is discussed.Comment: 4 pages, 2 figure, accepted for publication in Physical Review Letter

    Numerical simulations of chromospheric hard X-ray source sizes in solar flares

    Full text link
    X-ray observations are a powerful diagnostic tool for transport, acceleration, and heating of electrons in solar flares. Height and size measurements of X-ray footpoints sources can be used to determine the chromospheric density and constrain the parameters of magnetic field convergence and electron pitch-angle evolution. We investigate the influence of the chromospheric density, magnetic mirroring and collisional pitch-angle scattering on the size of X-ray sources. The time-independent Fokker-Planck equation for electron transport is solved numerically and analytically to find the electron distribution as a function of height above the photosphere. From this distribution, the expected X-ray flux as a function of height, its peak height and full width at half maximum are calculated and compared with RHESSI observations. A purely instrumental explanation for the observed source size was ruled out by using simulated RHESSI images. We find that magnetic mirroring and collisional pitch-angle scattering tend to change the electron flux such that electrons are stopped higher in the atmosphere compared with the simple case with collisional energy loss only. However, the resulting X-ray flux is dominated by the density structure in the chromosphere and only marginal increases in source width are found. Very high loop densities (>10^{11} cm^{-3}) could explain the observed sizes at higher energies, but are unrealistic and would result in no footpoint emission below about 40 keV, contrary to observations. We conclude that within a monolithic density model the vertical sizes are given mostly by the density scale-height and are predicted smaller than the RHESSI results show.Comment: 19 pages, 9 figures, accepted for publication in Ap

    Surfatron and stochastic acceleration of electrons in astrophysical plasmas

    Get PDF
    Electron acceleration by large amplitude electrostatic waves in astrophysical plasmas is studied using particle-in-cell (PIC) simulations. The waves are excited initially at the electron plasma frequency ωpe\omega_{\rm pe} by a Buneman instability driven by ion beams: the parameters of the ion beams are appropriate for high Mach number astrophysical shocks, such as those associated with supernova remnants (SNRs). If ωpe\omega_{\rm pe} is much higher than the electron cyclotron frequency Ωe\Omega_{\rm e}, the linear phase of the instability does not depend on the magnitude of the magnetic field. However, the subsequent time evolution of particles and waves depends on both ωpe/Ωe\omega_{\rm pe}/\Omega_{\rm e} and the size of the simulation box LL. If LL is equal to one wavelength, λ0\lambda_0, of the Buneman-unstable mode, electrons trapped by the waves undergo acceleration via the surfatron mechanism across the wave front. This occurs most efficiently when ωpe/Ωe100\omega_{\rm pe}/\Omega_{\rm e} \simeq 100: in this case electrons are accelerated to speeds of up c/2c/2 where cc is the speed of light. In a simulation with L=4λ0L=4\lambda_0 and ωpe/Ωe=100\omega_{\rm pe}/\Omega_{\rm e} = 100, it is found that sideband instabilities give rise to a broad spectrum of wavenumbers, with a power law tail. Some stochastic electron acceleration is observed in this case, but not the surfatron process. Direct integration of the electron equations of motion, using parameters approximating to those of the wave modes observed in the simulations, suggests that the surfatron is compatible with the presence of a broad wave spectrum if ωpe/Ωe>100\omega_{\rm pe}/\Omega_{\rm e}> 100. It is concluded that a combination of stochastic and surfatron acceleration could provide an efficient generator of mildly relativistic electrons at SNR shocks

    Propagating EUV disturbances in the solar corona : two-wavelength observations

    Get PDF
    Quasi-periodic EUV disturbances simultaneously observed in 171 Å and 195 Å TRACE bandpasses propagating outwardly in a fan-like magnetic structure of a coronal active region are analysed. Time series of disturbances observed in the different bandpasses have a relatively high correlation coefficient (up to about 0.7). The correlation has a tendency to decrease with distance along the structure: this is consistent with an interpretation of the disturbances in terms of parallel-propagating slow magnetoacoustic waves. The wavelet analysis does not show a significant difference between waves observed in different bandpasses. Periodic patterns of two distinct periods: 2-3 min and 5-8 min are detected in both bandpasses, existing simultaneously and at the same distance along the loop, suggesting the nonlinear generation of the second harmonics

    Two-fluid and magnetohydrodynamic modelling of magnetic reconnection in the MAST spherical tokamak and the solar corona

    Full text link
    Twisted magnetic flux ropes are ubiquitous in space and laboratory plasmas, and the merging of such flux ropes through magnetic reconnection is an important mechanism for restructuring magnetic fields and releasing free magnetic energy. The merging-compression scenario is one possible start up scheme for spherical tokamaks, which has been used on the Mega Amp Spherical Tokamak MAST. Two current-carrying plasma rings, or flux ropes, approach each other through the mutual attraction of their like currents, and merge, through magnetic reconnection, into a single plasma torus, with substantial plasma heating. 2D resistive MHD and Hall MHD simulations of this process are reported, and new results for the temperature distribution of ions and electrons are presented. A model of the based on relaxation theory is also described, which is now extended to tight aspect ratio geometry. This model allows prediction of the final merged state and the heating. The implications of the relaxation model for heating of the solar corona are also discussed, and a model of the merger of two or more twisted coronal flux ropes is presented, allowing for different senses of twist
    corecore