2,037 research outputs found
A critical Mach number for electron injection in collisionless shocks
Electron acceleration in collisionless shocks with arbitrary magnetic field
orientations is discussed. It is shown that the injection of thermal electrons
into diffusive shock acceleration process is achieved by an electron beam with
a loss-cone in velocity space that is reflected back upstream from the shock
through shock drift acceleration mechanism. The electron beam is able to excite
whistler waves which can scatter the energetic electrons themselves when the
Alfven Mach number of the shock is sufficiently high. A critical Mach number
for the electron injection is obtained as a function of upstream parameters.
The application to supernova remnant shocks is discussed.Comment: 4 pages, 2 figure, accepted for publication in Physical Review
Letter
Propagating EUV disturbances in the solar corona : two-wavelength observations
Quasi-periodic EUV disturbances simultaneously observed in 171 Å and 195 Å TRACE bandpasses propagating outwardly in a fan-like magnetic structure of a coronal active region are analysed. Time series of disturbances observed in the different bandpasses have a relatively high correlation coefficient (up to about 0.7). The correlation has a tendency to decrease with distance along the structure: this is consistent with an interpretation of the disturbances in terms of parallel-propagating slow magnetoacoustic waves. The wavelet analysis does not show a significant difference between waves observed in different bandpasses. Periodic patterns of two distinct periods: 2-3 min and 5-8 min are detected in both bandpasses, existing simultaneously and at the same distance along the loop, suggesting the nonlinear generation of the second harmonics
Surfatron and stochastic acceleration of electrons in astrophysical plasmas
Electron acceleration by large amplitude electrostatic waves in astrophysical plasmas is studied using particle-in-cell (PIC) simulations. The waves are excited initially at the electron plasma frequency by a Buneman instability driven by ion beams: the parameters of the ion beams are appropriate for high Mach number astrophysical shocks, such as those associated with supernova remnants (SNRs). If is much higher than the electron cyclotron frequency , the linear phase of the instability does not depend on the magnitude of the magnetic field. However, the subsequent time evolution of particles and waves depends on both and the size of the simulation box . If is equal to one wavelength, , of the Buneman-unstable mode, electrons trapped by the waves undergo acceleration via the surfatron mechanism across the wave front. This occurs most efficiently when : in this case electrons are accelerated to speeds of up where is the speed of light. In a simulation with and , it is found that sideband instabilities give rise to a broad spectrum of wavenumbers, with a power law tail. Some stochastic electron acceleration is observed in this case, but not the surfatron process. Direct integration of the electron equations of motion, using parameters approximating to those of the wave modes observed in the simulations, suggests that the surfatron is compatible with the presence of a broad wave spectrum if . It is concluded that a combination of stochastic and surfatron acceleration could provide an efficient generator of mildly relativistic electrons at SNR shocks
On the Nature of MeV-blazars
Broad-band spectra of the FSRQ (flat-spectrum-radio quasars) detected in the
high energy gamma-ray band imply that there may be two types of such objects:
those with steep gamma-ray spectra, hereafter called MeV-blazars, and those
with flat gamma-ray spectra, GeV-blazars. We demonstrate that this difference
can be explained in the context of the ERC (external-radiation-Compton) model
using the same electron injection function. A satisfactory unification is
reachable, provided that: (a) spectra of GeV-blazars are produced by internal
shocks formed at the distances where cooling of relativistic electrons in a jet
is dominated by Comptonization of broad emission lines, whereas spectra of
MeV-blazars are produced at the distances where cooling of relativistic
electrons is dominated by Comptonization of near-IR radiation from hot dust;
(b) electrons are accelerated via a two step process and their injection
function takes the form of a double power-law, with the break corresponding to
the threshold energy for the diffusive shock acceleration. Direct predictions
of our model are that, on average, variability time scales of the MeV-blazars
should be longer than variability time scales of the GeV-blazars, and that both
types of the blazar phenomenon can appear in the same object.Comment: Accepted for publication in the Astrophysical Journa
Recommended from our members
Influence of oat components on lipid digestion using an in vitro model: impact of viscosity and depletion flocculation mechanism
Depletion flocculation is a well-known instability mechanism that can occur in oil-in-water emulsions when the
concentration of non-adsorbed polysaccharide exceeds a certain level. This critical flocculation concentration
depends on the molecular characteristics of the polysaccharide molecules, such as their molecular weight and hydrodynamic radius. In this study, a range of analytical methods (dynamic shear rheology, optical microscopy, and static light-scattering) were used to investigate the interaction between lipid droplets and polysaccharides (guar gum and β-glucans) of varying weight-average molecular weight and hydrodynamic radius, and concentration.
The aim of this work was to see if the health benefits of soluble fibers like β-glucans could be
explained by their influence on the structure and digestibility of lipid emulsions. The apparent viscosity of the emulsions increased with increasing polysaccharide concentration, molecular weight, and hydrodynamic radius.
Droplet flocculation was observed in the emulsions only at certain polysaccharide concentrations, which was
attributed to a depletion effect. In addition, the water-soluble components in oat flakes, flour, and bran were
extracted using aqueous solutions, to examine their impact on emulsion stability and properties. Then, the rate
and extent of lipolysis of a sunflower oil-in-water emulsion in the presence of these oat extracts were monitored using the pH-stat method. However, the inhibition of lipolysis was not linearly related to the viscosity of the oat solutions. The water-soluble extracts of β-glucan collected from oat flakes had a significant inhibitory effect on lipolysis. The results of this study increase our understanding of the possible mechanisms influencing the impact of oat constituents on lipid digestion. This work also highlights the importance of considering the molecular
properties of polysaccharides, and not just their impact on solution viscosity
Beam-Ion Acceleration during Edge Localized Modes in the ASDEX Upgrade Tokamak
The acceleration of beam ions during edge localized modes (ELMs) in a tokamak is observed for the first
time through direct measurements of fast-ion losses in low collisionality plasmas. The accelerated beamion
population exhibits well-localized velocity-space structures which are revealed by means of tomographic
inversion of the measurement, showing energy gains of the order of tens of keV. This suggests that
the ion acceleration results from a resonant interaction between the beam ions and parallel electric fields
arising during the ELM. Orbit simulations are carried out to identify the mode-particle resonances
responsible for the energy gain in the particle phase space. The observation motivates the incorporation of a
kinetic description of fast particles in ELM models and may contribute to a better understanding of the
mechanisms responsible for particle acceleration, ubiquitous in astrophysical and space plasmas.H2020 Marie- Sklodowska Curie programme (Grant No. 708257)Ministerio de Economía y Competitividad. FIS2015-69362-
- …
