6,583 research outputs found
Interdisciplinary research on the application of ERTS-1 data to the regional land use planning process
The author has identified the following significant results. Although the degree to which ERTS-1 imagery can satisfy regional land use planning data needs is not yet known, it appears to offer means by which the data acquisition process can be immeasurably improved. The initial experiences of an interdisciplinary group attempting to formulate ways of analyzing the effectiveness of ERTS-1 imagery as a base for environmental monitoring and the resolution of regional land allocation problems are documented. Application of imagery to the regional planning process consists of utilizing representative geographical regions within the state of Wisconsin. Because of the need to describe and depict regional resource complexity in an interrelatable state, certain resources within the geographical regions have been inventoried and stored in a two-dimensional computer-based map form. Computer oriented processes were developed to provide for the economical storage, analysis, and spatial display of natural and cultural data for regional land use planning purposes. The authors are optimistic that the imagery will provide revelant data for land use decision making at regional levels
Close Companions to T Tauri Stars: Abundant and Perturbing
The results of a speckle imaging survey of T Tauri stars
suggest that most, if not all, young low mass stars have companions. Furthermore, this survey reveals a distinction between the classical T Tauri stars (CTTS) and the weak-lined T Tauri stars (WTTS) based on the binary star frequency as a function of separation: the WTTS binary
star distribution is enhanced at the closer separations. This suggests that close companions interact with the circumstellar disk material to effectively shorten the accretion time scale in multiple star systems. Recent
follow up work has revealed orbital motion in the closest pairs (≤0."3), providing (1) evidence that these systems are indeed gravitationally bound and not the result of chance superpositions and (2) the basis for mass estimates that are necessary to distinguish between the various binary star formation mechanisms that have been proposed to date
The use of ERTS-1 data for the inventory of critical land resources for regional land use planning
Computer-generated spatial and statistical comparisons of critical land resource data derived from conventional sources, RB-57 photographs, and ERTS images, for an eastern Wisconsin test site, suggest that certain critical land resource data can be mapped from ERTS images on a statewide basis. This paper presents one of the biotic resources, wetlands, as an example of the use of ERTS imagery to inventory land resources
Providing Self-Aware Systems with Reflexivity
We propose a new type of self-aware systems inspired by ideas from
higher-order theories of consciousness. First, we discussed the crucial
distinction between introspection and reflexion. Then, we focus on
computational reflexion as a mechanism by which a computer program can inspect
its own code at every stage of the computation. Finally, we provide a formal
definition and a proof-of-concept implementation of computational reflexion,
viewed as an enriched form of program interpretation and a way to dynamically
"augment" a computational process.Comment: 12 pages plus bibliography, appendices with code description, code of
the proof-of-concept implementation, and examples of executio
Demonstrating Diversity in Star Formation Histories with the CSI Survey
We present coarse but robust star formation histories (SFHs) derived from
spectro-photometric data of the Carnegie-Spitzer-IMACS Survey, for 22,494
galaxies at 0.3<z<0.9 with stellar masses of 10^9 Msun to 10^12 Msun. Our study
moves beyond "average" SFHs and distribution functions of specific star
formation rates (sSFRs) to individually measured SFHs for tens of thousands of
galaxies. By comparing star formation rates (SFRs) with timescales of 10^10,
10^9, and 10^8 years, we find a wide diversity of SFHs: 'old galaxies' that
formed most or all of their stars early; galaxies that formed stars with
declining or constant SFRs over a Hubble time, and genuinely 'young galaxies'
that formed most of their stars since z=1. This sequence is one of decreasing
stellar mass, but, remarkably, each type is found over a mass range of a factor
of 10. Conversely, galaxies at any given mass follow a wide range of SFHs,
leading us to conclude that: (1) halo mass does not uniquely determine SFHs;
(2) there is no 'typical' evolutionary track; and (3) "abundance matching" has
limitations as a tool for inferring physics. Our observations imply that SFHs
are set at an early epoch, and that--for most galaxies--the decline and
cessation of star formation occurs over a Hubble-time, without distinct
"quenching" events. SFH diversity is inconsistent with models where galaxy
mass, at any given epoch, grows simply along relations between SFR and stellar
mass, but is consistent with a 2-parameter lognormal form, lending credence to
this model from a new and independent perspective.Comment: 17 pages, 10 figures; accepted by ApJ; version 2 - no substantive
changes; clarifications and correction
Determinations of SIII, OIV and NeV abundances in planetary nebulae from IR lines
Airborne observations of the infrared forbidden lines (SIII) 18.71 microns, (NeV) 24.28 microns and (OIV) 25.87 microns were made for twelve planetary nebulae. One or more of the lines was detected in seven of these nebulae and ionic abundances were calculated. These results are insensitive to nebula temperatures, in contrast to the case for optical or UV lines. However, density estimates from optical and UV forbidden lines were required to obtain abundances. The NeV infrared line flux from NGC 7662 was combined with the 3426A flux to obtain a NeV electron temperature of 11,200 (+2000, - 1100) K, which overlaps OIII temperature measurements. Since the ionization potential of NeIV is much greater than that of OII, T sub e (NeV) would be expected to be much greater than T sub e (OIII). In fact, numerical models predict T sub e (NeV) (16-20) x 1000 K. This discrepancy may indicate inaccuracies in currently available atomic parameters for NeV
Speckle Imaging Measurements of the Relative Tangential Velocities of the Components of T Tauri Binary Stars
Over a five year period, we have used speckle imaging to monitor 20 T Tauri binary stars with separations ranging from 0".09 to 1" (13-140 AU). This project is aimed at detecting the relative motion of the component stars to ascertain whether or not the observed companions (1) are stellar in nature, as opposed to being HH objects, and (2) are gravitationally bound to the primary stars. These observations demonstrate that speckle imaging measurements of close binary stars' separations can be made with an accuracy of a few milliarcseconds. The majority of the observed systems show significant relative velocities which (1) are not consistent with the motion expected for HH objects, (2) are greater than the velocity dispersion of these star-forming regions and thus are not the result of differential proper motion, and (3) are consistent with orbital motion. This is the first demonstration that these systems are physically bound. Furthermore, these relative velocity measurements provide dynamical evidence that the average total mass of these T Tauri binary star systems is ~l.7M_⊙
Isothermal Recombinase Polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection
© 2015 Rosser et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article
Implementation of routine outcome measurement in child and adolescent mental health services in the United Kingdom: a critical perspective
The aim of this commentary is to provide an overview of clinical outcome measures that are currently recommended for use in UK Child and Adolescent Mental Health Services (CAMHS), focusing on measures that are applicable across a wide range of conditions with established validity and reliability, or innovative in their design. We also provide an overview of the barriers and drivers to the use of Routine Outcome Measurement (ROM) in clinical practice
Associations between cardiorespiratory fitness, physical activity and clustered cardiometabolic risk in children and adolescents: the HAPPY study
Clustering of cardiometabolic risk factors can occur during childhood and predisposes individuals to cardiometabolic disease. This study calculated clustered cardiometabolic risk in 100 children and adolescents aged 10-14 years (59 girls) and explored differences according to cardiorespiratory fitness (CRF) levels and time spent at different physical activity (PA) intensities. CRF was determined using a maximal cycle ergometer test, and PA was assessed using accelerometry. A cardiometabolic risk score was computed as the sum of the standardised scores for waist circumference, blood pressure, total cholesterol/high-density lipoprotein ratio, triglycerides and glucose. Differences in clustered cardiometabolic risk between fit and unfit participants, according to previously proposed health-related threshold values, and between tertiles for PA subcomponents were assessed using ANCOVA. Clustered risk was significantly lower (p < 0.001) in the fit group (mean 1.21 ± 3.42) compared to the unfit group (mean -0.74 ± 2.22), while no differences existed between tertiles for any subcomponent of PA. Conclusion These findings suggest that CRF may have an important cardioprotective role in children and adolescents and highlights the importance of promoting CRF in youth
- …
